Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting

This paper deals with some classes of Kirchhoff type problems on a double phase setting and with nonlinear boundary conditions. Under general assumptions, we provide multiplicity results for such problems in the case when the perturbations exhibit a suitable behavior in the origin and at infinity, or when they do not necessarily satisfy the Ambrosetti-Rabinowitz condition. To this aim, we combine variational methods, truncation arguments and topological tools.

[1]  Guowei Dai,et al.  Existence and multiplicity results for double phase problem , 2018, Journal of Differential Equations.

[2]  Csaba Farkas,et al.  An existence result for singular Finsler double phase problems , 2020, Journal of Differential Equations.

[3]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[6]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[7]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[8]  Pablo Pedregal,et al.  Some Variational Problems , 1997 .

[9]  G. Mingione,et al.  Regularity for general functionals with double phase , 2017, 1708.09147.

[10]  K. Perera,et al.  Existence results for double-phase problems via Morse theory , 2016, 1607.03609.

[11]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[12]  Shibo Liu,et al.  On superlinear problems without the Ambrosetti and Rabinowitz condition , 2010 .

[13]  M. Squassina,et al.  Eigenvalues for double phase variational integrals , 2015, 1507.01959.

[14]  iuseppe,et al.  Regularity for double phase variational problems , 2014 .

[15]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[16]  Vieri Benci,et al.  Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity , 1983 .

[17]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[18]  N. Papageorgiou,et al.  Constant sign and nodal solutions for superlinear double phase problems , 2019, Advances in Calculus of Variations.

[19]  Paolo Marcellini Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions , 1989 .

[20]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[21]  Csaba Farkas,et al.  Singular Finsler Double Phase Problems with Nonlinear Boundary Condition , 2021, Advanced Nonlinear Studies.

[22]  A. Fiscella A Double Phase Problem Involving Hardy Potentials , 2020, Applied Mathematics & Optimization.

[23]  G. Mingione,et al.  Harnack inequalities for double phase functionals , 2015 .

[24]  G. Mingione,et al.  Bounded Minimisers of Double Phase Variational Integrals , 2015 .

[25]  A. Pinamonti,et al.  Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting , 2020, Mediterranean Journal of Mathematics.

[26]  Jian-Fang Lu,et al.  Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions , 2019, Nonlinear Analysis.

[27]  G. Marino,et al.  Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian , 2020, Advances in Nonlinear Analysis.

[28]  An L,et al.  Eigenvalue Problems for the P-laplacian , 2022 .

[29]  Patrick Winkert,et al.  A new class of double phase variable exponent problems: Existence and uniqueness , 2021 .

[30]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[31]  Dušan D. Repovš,et al.  Ground state and nodal solutions for a class of double phase problems , 2019, Zeitschrift für angewandte Mathematik und Physik.