Field parameters investigation of CO2 splitting in atmospheric DBD plasma by multi-physics coupling simulation and emission spectroscopy measurements

[1]  D. Dai,et al.  Surface-induced gas-phase redistribution effects in plasma-catalytic dry reforming of methane: numerical investigation by fluid modeling , 2022, Journal of Physics D: Applied Physics.

[2]  Chunfei Wu,et al.  Boosting the Conversion of CO2 with Biochar to Clean CO in an Atmospheric Plasmatron: A Synergy of Plasma Chemistry and Thermochemistry , 2022, ACS Sustainable Chemistry & Engineering.

[3]  S. Kawi,et al.  Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma , 2022, Catalysts.

[4]  Dawei Liu,et al.  Synergistic CO2 plasma catalysis: CO production pathways and effects of vibrationally excited species , 2021, Journal of CO2 Utilization.

[5]  A. Gonzalez-Elipe,et al.  Plasma assisted CO2 dissociation in pure and gas mixture streams with a ferroelectric packed-bed reactor in ambient conditions , 2021, Chemical Engineering Journal.

[6]  P. Show,et al.  Greenhouse gases utilization: A review , 2021 .

[7]  R. Snyders,et al.  CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: Recent progress and understanding , 2021, Journal of CO2 Utilization.

[8]  C. Batiot-Dupeyrat,et al.  Efficient plasma-catalysis coupling for CH4 and CO2 transformation in a fluidized bed reactor: Comparison with a fixed bed reactor , 2020 .

[9]  Y. Duan,et al.  Conversion of CO2 in a low-powered atmospheric microwave plasma: In-depth study on the trade-off between CO2 conversion and energy efficiency , 2020 .

[10]  G. Abbas,et al.  The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review , 2020 .

[11]  Xinpei Lu,et al.  The plasma enhanced surface reactions in a packed bed dielectric barrier discharge reactor , 2020, Journal of Physics D: Applied Physics.

[12]  Wei Jiang,et al.  Impact of different packing beads methods for streamer generation and propagation in packed-bed dielectric barrier discharge , 2020, Journal of Physics D: Applied Physics.

[13]  A. Bogaerts,et al.  Improving the Energy Efficiency of CO2 Conversion in Nonequilibrium Plasmas through Pulsing , 2019, The Journal of Physical Chemistry C.

[14]  Dia Milani,et al.  Trends in CO2 conversion and utilization: A review from process systems perspective , 2018, Journal of Environmental Chemical Engineering.

[15]  A. Bogaerts,et al.  Streamer propagation in a packed bed plasma reactor for plasma catalysis applications , 2018 .

[16]  X. Tu,et al.  Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2 , 2018 .

[17]  Ramses Snoeckx,et al.  Plasma technology - a novel solution for CO2 conversion? , 2017, Chemical Society reviews.

[18]  X. Tu,et al.  Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design , 2017 .

[19]  J. Foster,et al.  Propagation of negative electrical discharges through 2-dimensional packed bed reactors , 2017 .

[20]  Baowei Wang,et al.  Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor , 2015 .

[21]  A. Bogaerts,et al.  Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. , 2015, ChemSusChem.

[22]  John-Paul Jones,et al.  Recycling of carbon dioxide to methanol and derived products - closing the loop. , 2014, Chemical Society reviews.

[23]  Van de Sanden,et al.  CO and byproduct formation during CO2 reduction in dielectric barrier discharges , 2014 .

[24]  A. Bogaerts,et al.  Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges , 2012 .

[25]  Jon Tomas Gudmundsson,et al.  Oxygen discharges diluted with argon: dissociation processes , 2007 .

[26]  Anatoly P. Napartovich,et al.  Physics and engineering of singlet delta oxygen production in low-temperature plasma , 2007 .

[27]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[28]  Dionisios G. Vlachos,et al.  Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt , 2004 .

[29]  W. S. Kang,et al.  Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics , 2003 .

[30]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[31]  J. Behnke,et al.  Modelling of the homogeneous barrier discharge in helium at atmospheric pressure , 2003 .

[32]  W Steckelmacher,et al.  Plasma kinetics in atmospheric gases , 2001 .

[33]  Guanguang Xia,et al.  CO2 Decomposition Using Glow Discharge Plasmas , 1999 .

[34]  T. Märk,et al.  Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone , 1997 .

[35]  H. Sawin,et al.  Continuum modeling of radio‐frequency glow discharges. I. Theory and results for electropositive and electronegative gases , 1992 .

[36]  I. A. Kossyi,et al.  Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures , 1992 .

[37]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[38]  G. Flynn,et al.  Diode laser absorption probe of vibration-vibration energy transfer in carbon dioxide , 1987 .

[39]  Mark A. Johnson,et al.  Resolution of the Ã/B̃ photoionization branching ratio paradox for the 12CO+2 B̃(000) state , 1984 .

[40]  M. Tsuji,et al.  CO2+(ÖX̃ and B̃–X̃) emissions resulting from the He(2 3S)+CO2 Penning ionization , 1982 .

[41]  J. E. Land Electron scattering cross sections for momentum transfer and inelastic excitation in carbon monoxide , 1978 .

[42]  G. Nickerson,et al.  A Survey of Vibrational Relaxation Rate Data for Processes Important to CO2-N2-H2O Infrared Plume Radiation , 1974 .

[43]  J. Lowke,et al.  Predicted electron transport coefficients and operating characteristics of CO2–N2–He laser mixtures , 1973 .

[44]  R. Sharma Near-Resonant Vibrational Energy Transfer Among Isotopes of CO2 , 1969 .

[45]  Z. ZHANG 张,et al.  Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc , 2022 .

[46]  Lilong Jia,et al.  Carbon peak and carbon neutrality in China: Goals, implementation path, and prospects , 2021, China Geology.

[47]  Chunfei Wu,et al.  A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization , 2021 .

[48]  P. Kerkhof,et al.  Toward a unified theory of isotropic molecular transport phenomena , 2005 .

[49]  P. Roth,et al.  Formation of O(1D) atoms in thermal decomposition of CO2 , 1997 .

[50]  Thomas G. Beuthe Thomas G. Beuthe,et al.  Chemical Kinetic Modelling of Non-Equilibrium Ar-CO 2 Thermal Plasmas , 1997 .

[51]  A. Cenian,et al.  Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 lasers. II. Theoretical Model and its Verification , 1995 .

[52]  A. Cenian,et al.  Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 Lasers I. Gas Decomposition in Pure CO2 Glow Discharge , 1994 .