Selective sampling and active learning from single and multiple teachers

We present a new online learning algorithm in the selective sampling framework, where labels must be actively queried before they are revealed. We prove bounds on the regret of our algorithm and on the number of labels it queries when faced with an adaptive adversarial strategy of generating the instances. Our bounds both generalize and strictly improve over previous bounds in similar settings. Additionally, our selective sampling algorithm can be converted into an efficient statistical active learning algorithm. We extend our algorithm and analysis to the multiple-teacher setting, where the algorithm can choose which subset of teachers to query for each label. Finally, we demonstrate the effectiveness of our techniques on a real-world Internet search problem.

[1]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[2]  Sanjoy Dasgupta,et al.  A General Agnostic Active Learning Algorithm , 2007, ISAIM.

[3]  Yishay Mansour,et al.  Multiple Source Adaptation and the Rényi Divergence , 2009, UAI.

[4]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[5]  Panagiotis G. Ipeirotis,et al.  Get another label? improving data quality and data mining using multiple, noisy labelers , 2008, KDD.

[6]  Jennifer G. Dy,et al.  Active Learning from Crowds , 2011, ICML.

[7]  Claudio Gentile,et al.  Worst-Case Analysis of Selective Sampling for Linear Classification , 2006, J. Mach. Learn. Res..

[8]  Jaime G. Carbonell,et al.  Proactive learning: cost-sensitive active learning with multiple imperfect oracles , 2008, CIKM '08.

[9]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[10]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[11]  Maria-Florina Balcan,et al.  Margin Based Active Learning , 2007, COLT.

[12]  David A. Cohn,et al.  Training Connectionist Networks with Queries and Selective Sampling , 1989, NIPS.

[13]  Vladimir Koltchinskii,et al.  Rademacher Complexities and Bounding the Excess Risk in Active Learning , 2010, J. Mach. Learn. Res..

[14]  Claudio Gentile,et al.  Improved Risk Tail Bounds for On-Line Algorithms , 2005, IEEE Transactions on Information Theory.

[15]  David P. Helmbold,et al.  Some label efficient learning results , 1997, COLT '97.

[16]  H. Sebastian Seung,et al.  Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.

[17]  Ambuj Tewari,et al.  On the Generalization Ability of Online Strongly Convex Programming Algorithms , 2008, NIPS.

[18]  Ohad Shamir,et al.  Good learners for evil teachers , 2009, ICML '09.

[19]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[20]  Yishay Mansour,et al.  Domain Adaptation with Multiple Sources , 2008, NIPS.

[21]  Koby Crammer,et al.  Learning from Multiple Sources , 2006, NIPS.

[22]  Steve Hanneke,et al.  Adaptive Rates of Convergence in Active Learning , 2009, COLT.

[23]  Claudio Gentile,et al.  Linear Classification and Selective Sampling Under Low Noise Conditions , 2008, NIPS.

[24]  Jaime G. Carbonell,et al.  Cost Complexity of Proactive Learning via a Reduction to Realizable Active Learning , 2009 .

[25]  Gábor Lugosi,et al.  Minimizing regret with label efficient prediction , 2004, IEEE Transactions on Information Theory.

[26]  Jaime G. Carbonell,et al.  Efficiently learning the accuracy of labeling sources for selective sampling , 2009, KDD.

[27]  Manfred K. Warmuth,et al.  Relative Loss Bounds for On-Line Density Estimation with the Exponential Family of Distributions , 1999, Machine Learning.

[28]  Maria-Florina Balcan,et al.  The true sample complexity of active learning , 2010, Machine Learning.

[29]  Mark W. Schmidt,et al.  Modeling annotator expertise: Learning when everybody knows a bit of something , 2010, AISTATS.

[30]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[31]  Pietro Perona,et al.  Inferring Ground Truth from Subjective Labelling of Venus Images , 1994, NIPS.

[32]  Robert D. Nowak,et al.  Minimax Bounds for Active Learning , 2007, IEEE Transactions on Information Theory.

[33]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[34]  Steve Hanneke,et al.  A bound on the label complexity of agnostic active learning , 2007, ICML '07.

[35]  D. Spiegelhalter,et al.  An analysis of repeated biopsies following cardiac transplantation. , 1983, Statistics in medicine.

[36]  Brett Browning,et al.  Automatic weight learning for multiple data sources when learning from demonstration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[37]  John Langford,et al.  Agnostic active learning , 2006, J. Comput. Syst. Sci..

[38]  Michael L. Littman,et al.  Online Linear Regression and Its Application to Model-Based Reinforcement Learning , 2007, NIPS.

[39]  Thomas P. Hayes,et al.  Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.

[40]  Maytal Saar-Tsechansky,et al.  Economical active feature-value acquisition through Expected Utility estimation , 2005, UBDM '05.

[41]  Changshui Zhang,et al.  What if the irresponsible teachers are dominating? a method of training on samples and clustering on teachers , 2010, AAAI 2010.

[42]  Jaime G. Carbonell,et al.  A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy , 2010, SDM.

[43]  Claudio Gentile,et al.  Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling , 2003, COLT.

[44]  Claudio Gentile,et al.  A Second-Order Perceptron Algorithm , 2002, SIAM J. Comput..

[45]  John Langford,et al.  Agnostic Active Learning Without Constraints , 2010, NIPS.

[46]  Thomas J. Walsh,et al.  Knows what it knows: a framework for self-aware learning , 2008, ICML '08.

[47]  Francis R. Bach,et al.  Active learning for misspecified generalized linear models , 2006, NIPS.

[48]  Koby Crammer,et al.  Multiclass classification with bandit feedback using adaptive regularization , 2012, Machine Learning.

[49]  Tom Heskes,et al.  Learning from Multiple Annotators with Gaussian Processes , 2011, ICANN.

[50]  J. Carbonell,et al.  Adaptive Proactive Learning with Cost-Reliability Tradeoff , 2009 .

[51]  Claudio Gentile,et al.  Robust bounds for classification via selective sampling , 2009, ICML '09.

[52]  V. Vovk Competitive On‐line Statistics , 2001 .

[53]  Gerardo Hermosillo,et al.  Learning From Crowds , 2010, J. Mach. Learn. Res..

[54]  Adam Tauman Kalai,et al.  Analysis of Perceptron-Based Active Learning , 2009, COLT.

[55]  A. Tsybakov,et al.  Optimal aggregation of classifiers in statistical learning , 2003 .

[56]  Francesco Orabona,et al.  Better Algorithms for Selective Sampling , 2011, ICML.

[57]  Jaime G. Carbonell,et al.  Proactive learning: towards learning with multiple imperfect predictors , 2010 .

[58]  S. Hui,et al.  Evaluation of diagnostic tests without gold standards , 1998, Statistical methods in medical research.

[59]  Ohad Shamir,et al.  Vox Populi: Collecting High-Quality Labels from a Crowd , 2009, COLT.