Complex Semisimple Lie Algebras

I Nilpotent Lie Algebras and Solvable Lie Algebras.- 1. Lower Central Series.- 2. Definition of Nilpotent Lie Algebras.- 3. An Example of a Nilpotent Algebra.- 4. Engel's Theorems.- 5. Derived Series.- 6. Definition of Solvable Lie Algebras.- 7. Lie's Theorem.- 8. Cartan's Criterion.- II Semisimple Lie Algebras (General Theorems).- 1. Radical and Semisimpiicity.- 2. The Cartan-Killing Criterion.- 3. Decomposition of Semisimple Lie Algebras.- 4. Derivations of Semisimple Lie Algebras.- 5. Semisimple Elements and Nilpotent Elements.- 6. Complete Reducibility Theorem.- 7. Complex Simple Lie Algebras.- 8. The Passage from Real to Complex.- III Cartan Subalgebras.- 1. Definition of Cartan Subalgebras.- 2. Regular Elements: Rank.- 3. The Cartan Subalgebra Associated with a Regular Element.- 4. Conjugacy of Cartan Subalgebras.- 5. The Semisimple Case.- 6. Real Lie Algebras.- IV The Algebra SI2 and Its Representations.- 1. The Lie Algebra sl2.- 2. Modules, Weights, Primitive Elements.- 3. Structure of the Submodule Generated by a Primitive Element.- 4. The Modules Wm.- 5. Structure of the Finite-Dimensional g-Modules.- 6. Topological Properties of the Group SL2.- V Root Systems.- 1. Symmetries.- 2. Definition of Root Systems.- 3. First Examples.- 4. The Weyl Group.- 5. Invariant Quadratic Forms.- 6. Inverse Systems.- 7. Relative Position of Two Roots.- 8. Bases.- 9. Some Properties of Bases.- 10. Relations with the Weyl Group.- 11. The Cartan Matrix.- 12. The Coxeter Graph.- 13. Irreducible Root Systems.- 14. Classification of Connected Coxeter Graphs.- 15. Dynkin Diagrams.- 16. Construction of Irreducible Root Systems.- 17. Complex Root Systems.- VI Structure of Semisimple Lie Algebras.- 1. Decomposition of g.- 2. Proof of Theorem 2.- 3. Borei Subalgebras.- 4. Weyl Bases.- 5. Existence and Uniqueness Theorems.- 6. Chevalley's Normalization.- Appendix. Construction of Semisimple Lie Algebras by Generators and Relations.- VII Linear Representations of Semisimple Lie Algebras.- 1. Weights.- 2. Primitive Elements.- 3. Irreducible Modules with a Highest Weight.- 4. Finite-Dimensional Modules.- 5. An Application to the Weyl Group.- 6. Example: sl n+1.- 7. Characters.- 8. H. Weyl's formula.- VIII Complex Groups and Compact Groups.- 1. Cartan Subgroups.- 2. Characters.- 3. Relations with Representations.- 4. Berel Subgroups.- 5. Construction of Irreducible Representations from Boret Subgroups.- 6. Relations with Algebraic Groups.- 7. Relations with Compact Groups.