Simulation of quantum circuits by low-rank stabilizer decompositions

Recent work has explored using the stabilizer formalism to classically simulate quantum circuits containing a few non-Clifford gates. The computational cost of such methods is directly related to the notion of stabilizer rank, which for a pure state $\psi$ is defined to be the smallest integer $\chi$ such that $\psi$ is a superposition of $\chi$ stabilizer states. Here we develop a comprehensive mathematical theory of the stabilizer rank and the related approximate stabilizer rank. We also present a suite of classical simulation algorithms with broader applicability and significantly improved performance over the previous state-of-the-art. A new feature is the capability to simulate circuits composed of Clifford gates and arbitrary diagonal gates, extending the reach of a previous algorithm specialized to the Clifford+T gate set. We implemented the new simulation methods and used them to simulate quantum algorithms with 40-50 qubits and over 60 non-Clifford gates, without resorting to high-performance computers. We report a simulation of the Quantum Approximate Optimization Algorithm in which we process superpositions of $\chi\sim10^6$ stabilizer states and sample from the full n-bit output distribution, improving on previous simulations which used $\sim 10^3$ stabilizer states and sampled only from single-qubit marginals. We also simulated instances of the Hidden Shift algorithm with circuits including up to 64 T gates or 16 CCZ gates; these simulations showcase the performance gains available by optimizing the decomposition of a circuit's non-Clifford components.

[1]  Noga Alon,et al.  Transversal numbers of uniform hypergraphs , 1990, Graphs Comb..

[2]  J. Smolin,et al.  Trading Classical and Quantum Computational Resources , 2015, 1506.01396.

[3]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[4]  D. Gross,et al.  Schur–Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations , 2017, Communications in Mathematical Physics.

[5]  Lior Eldar,et al.  Local Hamiltonians Whose Ground States Are Hard to Approximate , 2015, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Richard Kueng,et al.  Qubit stabilizer states are complex projective 3-designs , 2015, ArXiv.

[7]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[8]  Thomas Sauerwald,et al.  Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms , 2010, SODA 2010.

[9]  Mario Szegedy,et al.  Explicit Lower Bounds on Strong Quantum Simulation , 2018, IEEE Transactions on Information Theory.

[10]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[11]  Tomoyuki Morimae,et al.  Post hoc verification with a single prover , 2016 .

[12]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[13]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[14]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[15]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[16]  Richard Jozsa,et al.  On verifying validity of quantum computations for BQP , 2017 .

[17]  ALPHA Collaboration , 1999 .

[18]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[19]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[20]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[21]  Igor L. Markov,et al.  Efficient Inner-product Algorithm for Stabilizer States , 2012, ArXiv.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[24]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[25]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[26]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[27]  Dmitri Maslov,et al.  Shorter Stabilizer Circuits via Bruhat Decomposition and Quantum Circuit Transformations , 2017, IEEE Transactions on Information Theory.

[28]  Elizabeth Crosson,et al.  Quantum ground state isoperimetric inequalities for the energy spectrum of local Hamiltonians , 2017, 1703.10133.

[29]  Richard S. Varga,et al.  A Linear Algebra Proof that the Inverse of a Strictly UltrametricMatrix is a Strictly Diagonally Dominant Stieltjes Matrix , 1994 .

[30]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[31]  Erik M. Ferragut,et al.  Unbiased simulation of near-Clifford quantum circuits , 2017, 1703.00111.

[32]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[33]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[34]  D. Gottesman,et al.  GHZ extraction yield for multipartite stabilizer states , 2005, quant-ph/0504208.

[35]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[36]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[37]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[38]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[39]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[40]  Lucas Kocia,et al.  Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states , 2017, 1705.08869.

[41]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[42]  Ulli Wolff,et al.  Monte Carlo errors with less errors , 2004 .

[43]  Earl T. Campbell,et al.  Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.

[44]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[45]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[46]  R. Raussendorf,et al.  Wigner Function Negativity and Contextuality in Quantum Computation on Rebits , 2014, 1409.5170.

[47]  Guangwen Yang,et al.  Quantum Supremacy Circuit Simulation on Sunway TaihuLight , 2018, IEEE Transactions on Parallel and Distributed Systems.

[48]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[49]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[50]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[51]  S. Martínez,et al.  Inverse of Strictly Ultrametric Matrices are of Stieltjes Type , 1994 .

[52]  Joseph Fitzsimons,et al.  Post hoc verification of quantum computation , 2015, Physical review letters.

[53]  Igor L. Markov,et al.  On the geometry of stabilizer states , 2014, Quantum Inf. Comput..

[54]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[55]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[56]  Maarten Van Den Nes Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .

[57]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[58]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[59]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[60]  Martin Rötteler,et al.  Quantum algorithms for highly non-linear Boolean functions , 2008, SODA '10.

[61]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[62]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[63]  Stephen D. Bartlett,et al.  Contextuality bounds the efficiency of classical simulation of quantum processes , 2018, 1802.07744.

[64]  Richard Jozsa,et al.  Efficient classical verification of quantum computations , 2017 .

[65]  Bartosz Regula,et al.  Convex geometry of quantum resource quantification , 2017, 1707.06298.

[66]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[67]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.