Dynamic Mean-Variance Portfolio Analysis under Model Risk

The classical Markowitz approach to portfolio selection is compromised by two major shortcomings. First, there is considerable model risk with respect to the distribution of asset returns. Particularly, mean returns are notoriously difficult to estimate. Moreover, the Markowitz approach is static in that it does not account for the possibility of portfolio rebalancing within the investment horizon. We propose a robust dynamic portfolio optimization model to overcome both shortcomings. The model arises from an infinite-dimensional min-max framework. The objective is to minimize the worst-case portfolio variance over a family of dynamic investment strategies subject to a return target constraint. The worst-case variance is evaluated with respect to a set of conceivable return distributions. We develop a quantitative approach to approximate this intractable problem by a tractable one and report on numerical experiments.

[1]  Robert A. Stubbs,et al.  Incorporating estimation errors into portfolio selection: Robust portfolio construction , 2006 .

[2]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[3]  B. Rustem,et al.  Robust min}max portfolio strategies for rival forecast and risk scenarios , 2000 .

[4]  F. Fabozzi Robust Portfolio Optimization and Management , 2007 .

[5]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[6]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[7]  Daniel Kuhn,et al.  Aggregation and discretization in multistage stochastic programming , 2008, Math. Program..

[8]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[9]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[10]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[11]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[12]  R. Ash,et al.  Real analysis and probability , 1975 .

[13]  X. Zhou,et al.  CONTINUOUS‐TIME MEAN‐VARIANCE PORTFOLIO SELECTION WITH BANKRUPTCY PROHIBITION , 2005 .

[14]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[15]  Markus Leippold,et al.  A Geometric Approach to Multiperiod Mean Variance Optimization of Assets and Liabilities , 2002 .

[16]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[17]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[18]  Marc C. Steinbach,et al.  Markowitz Revisited: Mean-Variance Models in Financial Portfolio Analysis , 2001, SIAM Rev..

[19]  Daniel Kuhn,et al.  Convergent Bounds for Stochastic Programs with Expected Value Constraints , 2009 .

[20]  J. Cockcroft Investment in Science , 1962, Nature.

[21]  Daniel Kuhn,et al.  Threshold Accepting Approach to Improve Bound-based Approximations for Portfolio Optimization , 2008 .

[22]  Karl Frauendorfer,et al.  Portfolio Selection Using Multi-Stage Stochastic Programming , 1999 .

[23]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[24]  Nalan Gülpinar,et al.  Worst-case robust decisions for multi-period mean-variance portfolio optimization , 2007, Eur. J. Oper. Res..

[25]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[26]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[27]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[28]  Robert B. Litterman,et al.  Asset Allocation , 1991 .

[29]  S. E. Wright,et al.  Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs , 1994, Math. Oper. Res..