Thermomechanical analysis of additively manufactured bimetallic tools for hot stamping

[1]  Sehyeok Oh,et al.  Deep learning model for predicting hardness distribution in laser heat treatment of AISI H13 tool steel , 2019, Applied Thermal Engineering.

[2]  Ashish Kumar Nath,et al.  Effect of tempering on laser remelted AISI H13 tool steel , 2019, Surface and Coatings Technology.

[3]  F. Martina,et al.  Microstructure and thermal properties of unalloyed tungsten deposited by Wire + Arc Additive Manufacture , 2019, Journal of Nuclear Materials.

[4]  Julie M. Schoenung,et al.  Reuse of powder feedstock for directed energy deposition , 2018, Powder Technology.

[5]  G. Artola,et al.  Effect of the Martensitic Transformation on the Stamping Force and Cycle Time of Hot Stamping Parts , 2018 .

[6]  G. Artola,et al.  Wear and Friction Evaluation of Different Tool Steels for Hot Stamping , 2018 .

[7]  A. Alberdi,et al.  Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD) and Milling , 2018 .

[8]  Haizea González Barrio,et al.  Desarrollo de estrategia y sensorización en proceso de LMD para reparación de geometrías tipo blisk , 2018 .

[9]  Aitzol Lamikiz Mentxaka,et al.  Análisis de la influencia del uso de fluido de corte en procesos híbridos de mecanizado y aporte por láser , 2018 .

[10]  S. Matope,et al.  Development of a model for predicting cycle time in hot stamping , 2018 .

[11]  A. Padre,et al.  High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools , 2017 .

[12]  Jianguo Lin,et al.  Investigation of a new hot stamping process with improved formability and productivity , 2017 .

[13]  Xin Li,et al.  Optimal Design for Cooling System of Hot Stamping Dies , 2016 .

[14]  Liang Ying,et al.  Optimal design of longitudinal conformal cooling channels in hot stamping tools , 2016 .

[15]  Stefania Bruschi,et al.  Tribological behavior of high thermal conductivity steels for hot stamping tools , 2016 .

[16]  Kunmin Zhao,et al.  Investigation of the factors influencing the interfacial heat transfer coefficient in hot stamping , 2016 .

[17]  Xiaoxin Zhang,et al.  Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions , 2016 .

[18]  Wenyi Yan,et al.  Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications , 2015 .

[19]  Giovanni Belingardi,et al.  Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam , 2015 .

[20]  I. Gibson,et al.  Directed Energy Deposition Processes , 2015 .

[21]  Xunpeng Qin,et al.  Numerical and experimental analysis of 3D spot induction hardening of AISI 1045 steel , 2014 .

[22]  James Wang,et al.  Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing , 2014 .

[23]  Shi-Hong Zhang,et al.  Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach , 2014 .

[24]  Xianhong Han,et al.  5.17 – Hot Stamping , 2014 .

[25]  Aitzol Lamikiz,et al.  Continuous Coaxial Nozzle Design for LMD based on Numerical Simulation , 2014 .

[26]  Zhong-de Shan,et al.  Hot-stamping die-cooling system for vehicle door beams , 2013 .

[27]  Andres Gasser,et al.  Study on influential factors for process monitoring and control in laser aided additive manufacturing , 2013 .

[28]  P. Hu,et al.  Influence of Hot Press Forming Techniques on Properties of Vehicle High Strength Steels , 2011 .

[29]  Min Zhou,et al.  Relationship Among Microstructure and Properties and Heat Treatment Process of Ultra-High Strength X120 Pipeline Steel , 2011 .

[30]  M. Brandt,et al.  Bimetallic dies with direct metal-deposited steel on Moldmax for high-pressure die casting application , 2011 .

[31]  B. Casas,et al.  Benefits from using high thermal conductivity tool steels in the hot forming of steels , 2010 .

[32]  A. Tekkaya,et al.  A review on hot stamping , 2010 .

[33]  Arthur B. Shapiro,et al.  Using LS-Dyna for Hot Stamping , 2009 .

[34]  Hartmut Hoffmann,et al.  Method for optimizing the cooling design of hot stamping tools , 2007, Prod. Eng..

[35]  J. Hosson,et al.  Thick tool steel coatings with laser cladding , 2007 .

[36]  S. Esterby American Society for Testing and Materials , 2006 .

[37]  Sheng-Hui Wang,et al.  A study of the abrasive wear behaviour of laser-clad tool steel coatings , 2006 .

[38]  J. Damborenea,et al.  Laser coatings to improve wear resistance of mould steel , 2005 .

[39]  J. Choi,et al.  Characteristics of laser aided direct metal/material deposition process for tool steel , 2005 .

[40]  Mats Oldenburg,et al.  Testing and evaluation of material data for analysis of forming and hardening of boron steel components , 2002 .

[41]  J. Jeng,et al.  Mold fabrication and modification using hybrid processes of selective laser cladding and milling , 2001 .

[42]  C. W. Chen,et al.  Development of a new laser cladding process for manufacturing cutting and stamping dies , 1998 .

[43]  M. Nathal,et al.  High temperature creep behavior of single crystal gamma prime and gamma alloys , 1988 .

[44]  B. Launder,et al.  Lectures in mathematical models of turbulence , 1972 .