Silica/alginate hybrid biomaterials and assessment of their covalent coupling

[1]  J. Donoghue Physical. , 2018, The Western journal of medicine.

[2]  Yufang Zhu,et al.  Effects of mesoporous bioglass on physicochemical and biological properties of calcium sulfate bone cements , 2017 .

[3]  Feng Chen,et al.  Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. , 2017, Journal of colloid and interface science.

[4]  Chee Kai Chua,et al.  Fundamentals and applications of 3D printing for novel materials , 2017 .

[5]  Julian R. Jones,et al.  Functionalizing natural polymers with alkoxysilane coupling agents: reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin , 2017 .

[6]  Julian R. Jones,et al.  Bioglass and Bioactive Glasses and Their Impact on Healthcare , 2016 .

[7]  Pamela Habibovic,et al.  Calcium phosphates in biomedical applications: materials for the future? , 2016 .

[8]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[9]  Julian R. Jones,et al.  ToF-SIMS evaluation of calcium-containing silica/γ-PGA hybrid systems for bone regeneration , 2014 .

[10]  Julian R. Jones,et al.  Poly(γ-glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor , 2014, Chemistry.

[11]  J. Jansen,et al.  Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. , 2014, Tissue engineering. Part B, Reviews.

[12]  H. Kim,et al.  Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration , 2014, Journal of biomaterials applications.

[13]  Julian R. Jones,et al.  Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables , 2014, Journal of Sol-Gel Science and Technology.

[14]  Julian R. Jones,et al.  Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. , 2014, Journal of materials chemistry. B.

[15]  Julian R. Jones,et al.  Bioactivity in silica/poly(γ-glutamic acid) sol-gel hybrids through calcium chelation. , 2013, Acta biomaterialia.

[16]  Yongxiang Luo,et al.  Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. , 2013, Journal of materials chemistry. B.

[17]  Qiang Gao,et al.  Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. , 2013, Journal of biomedical materials research. Part A.

[18]  Julian R. Jones,et al.  Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis. , 2013, Chemistry.

[19]  Huaping Tan,et al.  Alginate-Based Biomaterials for Regenerative Medicine Applications , 2013, Materials.

[20]  T. Coradin,et al.  Living materials from sol–gel chemistry: current challenges and perspectives , 2012 .

[21]  Julian R. Jones,et al.  Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds , 2012 .

[22]  K. Chennazhi,et al.  Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. , 2012, Carbohydrate polymers.

[23]  M. Popall,et al.  Applications of Advanced Hybrid Organic—Inorganic Nanomaterials: From Laboratory to Market , 2011 .

[24]  M. Popall,et al.  Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. , 2011, Chemical Society reviews.

[25]  Molly M. Stevens,et al.  Silica‐Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration , 2010 .

[26]  I. Gibson,et al.  Preparation of osteocompatible Si(IV)-enriched chitosan-silicate hybrids , 2010 .

[27]  Julian R. Jones,et al.  Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration , 2010 .

[28]  D. Qiu,et al.  Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. , 2009, Journal of biomedical materials research. Part A.

[29]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[30]  J. Czernuszka,et al.  Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. , 2009, Acta biomaterialia.

[31]  Kanji Tsuru,et al.  Synthesis and cytocompatibility of porous chitosan–silicate hybrids for tissue engineering scaffold application , 2008 .

[32]  J. Devoisselle,et al.  Potentialities of silica/alginate nanoparticles as hybrid magnetic carriers. , 2007, International journal of pharmaceutics.

[33]  David J Mooney,et al.  Alginate hydrogels as biomaterials. , 2006, Macromolecular bioscience.

[34]  Miqin Zhang,et al.  Alginate‐Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties , 2006 .

[35]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[36]  L. Hench,et al.  Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method , 2005, Journal of materials science. Materials in medicine.

[37]  A Tampieri,et al.  HA/alginate hybrid composites prepared through bio-inspired nucleation. , 2005, Acta biomaterialia.

[38]  Kanji Tsuru,et al.  In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. , 2005, Biomaterials.

[39]  S. Ogata,et al.  A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. , 2004, Journal of biomedical materials research. Part A.

[40]  S. Hayakawa,et al.  Synthesis of Bioactive and Porous Organic-Inorganic Hybrids for Biomedical Applications , 2004 .

[41]  B. Lim,et al.  Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute. , 2004, Biomacromolecules.

[42]  M. Toikka,et al.  Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. , 2003, Journal of the American Chemical Society.

[43]  Je-Yong Choi,et al.  Preparation of a bioactive and degradable poly(ε-caprolactone)/silica hybrid through a sol–gel method , 2002 .

[44]  N. Nassif,et al.  Living bacteria in silica gels , 2002, Nature materials.

[45]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[46]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[47]  Miqin Zhang,et al.  Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. , 2001, Journal of biomedical materials research.

[48]  F. Korkusuz,et al.  Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release. , 1999, Biomaterials.

[49]  K. Draget,et al.  Alginate based new materials. , 1997, International journal of biological macromolecules.

[50]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of Biomedical Materials Research.

[51]  Julian R. Jones,et al.  Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication , 2014 .

[52]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[53]  Kanji Tsuru,et al.  Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. , 2009, Acta biomaterialia.

[54]  Mark E. Smith,et al.  Multinuclear solid-state NMR of inorganic materials , 2002 .

[55]  K Nakanishi,et al.  The role of hydrated silica, titania, and alumina in inducing apatite on implants. , 1994, Journal of biomedical materials research.