Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel trick. However, due to the implicitness of the feature space, some extensions of PCA such as robust PCA cannot be directly generalized to KPCA. This paper presents a technique to overcome this problem, and extends it to a unified framework for treating noise, missing data, and outliers in KPCA. Our method is based on a novel cost function to perform inference in KPCA. Extensive experiments, in both synthetic and real data, show that our algorithm outperforms existing methods.

[1]  Bernhard Schölkopf,et al.  Learning to Find Pre-Images , 2003, NIPS.

[2]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[3]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[4]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Michel Desvignes,et al.  Missing Data Estimation Using Polynomial Kernels , 2005, ICAPR.

[7]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[8]  R. Cox,et al.  Journal of the Royal Statistical Society B , 1972 .

[9]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[10]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[11]  Yan-Wei Pang,et al.  An Iterative Algorithm for Robust Kernel Principal Component Analysis , 2007, 2007 International Conference on Machine Learning and Cybernetics.

[12]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[13]  Gunnar Rätsch,et al.  Kernel PCA pattern reconstruction via approximate pre-images. , 1998 .

[14]  Chunmei Zhang,et al.  Adaptive robust kernel PCA algorithm , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[15]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[16]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[17]  Shaogang Gong,et al.  A Multi-View Nonlinear Active Shape Model Using Kernel PCA , 1999, BMVC.

[18]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[19]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[20]  Neil D. Lawrence,et al.  Missing Data in Kernel PCA , 2006, ECML.