Analysing differential gene expression in cancer

[1]  Yuxin Yin,et al.  PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression , 2003, Nature.

[2]  Guillermina Lozano,et al.  Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation , 2003, Cell.

[3]  W. Gilbert Life after the helix , 2003, Nature.

[4]  S. Lorkowski,et al.  Analysing gene expression : a handbook of methods : possibilities and pitfalls , 2003 .

[5]  S. Lorkowski,et al.  Analysing Gene Expression , 2002 .

[6]  C. Perou,et al.  Molecular portraits and the family tree of cancer , 2002, Nature Genetics.

[7]  Emanuel F. Petricoin,et al.  Medical applications of microarray technologies: a regulatory science perspective , 2002, Nature Genetics.

[8]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[9]  Peng Liang,et al.  SAGE Genie: A suite with panoramic view of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ravi Kothapalli,et al.  Microarray results: how accurate are they? , 2002, BMC Bioinformatics.

[11]  Peng Liang,et al.  A decade of differential display. , 2002, BioTechniques.

[12]  Kenneth H Buetow,et al.  An anatomy of normal and malignant gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Tor-Kristian Jenssen,et al.  Analysis of repeatability in spotted cDNA microarrays. , 2002, Nucleic acids research.

[14]  Stephen Cooper,et al.  Cell cycle analysis and microarrays. , 2002, Trends in genetics : TIG.

[15]  D. Ross,et al.  Microarrays and molecular markers for tumor classification , 2002, Genome Biology.

[16]  K. Shedden,et al.  Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Kotenko,et al.  Interleukin 24 (MDA-7/MOB-5) Signals through Two Heterodimeric Receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2* , 2002, The Journal of Biological Chemistry.

[18]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[19]  Lucila Ohno-Machado,et al.  Analysis of matched mRNA measurements from two different microarray technologies , 2002, Bioinform..

[20]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[21]  Aled M. Edwards,et al.  Unfolding of Microarray Data , 2002, J. Comput. Biol..

[22]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Yaolin Wang,et al.  Analyses of p53 Target Genes in the Human Genome by Bioinformatic and Microarray Approaches* 210 , 2001, The Journal of Biological Chemistry.

[24]  A. Sinha,et al.  Gene expression profile analysis by DNA microarrays: promise and pitfalls. , 2001, JAMA.

[25]  D. Botstein,et al.  Diversity of gene expression in adenocarcinoma of the lung , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Knudson,et al.  Two genetic hits (more or less) to cancer , 2001, Nature Reviews Cancer.

[27]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Dhanasekaran,et al.  Delineation of prognostic biomarkers in prostate cancer , 2001, Nature.

[29]  T. Mak,et al.  Regulation of PTEN transcription by p53. , 2001, Molecular cell.

[30]  Y Taya,et al.  p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. , 2001, Molecular cell.

[31]  Gideon Rechavi,et al.  DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1 , 2001, Oncogene.

[32]  K. Vousden,et al.  PUMA, a novel proapoptotic gene, is induced by p53. , 2001, Molecular cell.

[33]  K. Kinzler,et al.  PUMA induces the rapid apoptosis of colorectal cancer cells. , 2001, Molecular cell.

[34]  Peng Liang,et al.  Multicolor fluorescent differential display. , 2001, BioTechniques.

[35]  W. Wayt Gibbs Shrinking to Enormity. , 2001 .

[36]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[38]  B. Kennedy,et al.  NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. , 2000, Genes & development.

[39]  Yusuke Nakamura,et al.  p53AIP1, a Potential Mediator of p53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53 , 2000, Cell.

[40]  Yunping Lin,et al.  Pidd, a new death-domain–containing protein, is induced by p53 and promotes apoptosis , 2000, Nature Genetics.

[41]  P. Liang,et al.  Identification of a Novel Ligand-Receptor Pair Constitutively Activated by ras Oncogenes* , 2000, The Journal of Biological Chemistry.

[42]  R. Wooster,et al.  Cancer classification with DNA microarrays is less more? , 2000, Trends in genetics : TIG.

[43]  Rithy K. Roth,et al.  Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays , 2000, Nature Biotechnology.

[44]  T. Taniguchi,et al.  Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. , 2000, Science.

[45]  D. Notterman,et al.  Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. , 2000, Genes & development.

[46]  S. Lowe,et al.  PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. , 2000, Genes & development.

[47]  Yusuke Nakamura,et al.  A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage , 2000, Nature.

[48]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[49]  G. Zambetti,et al.  ei24, a p53 Response Gene Involved in Growth Suppression and Apoptosis , 2000, Molecular and Cellular Biology.

[50]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[51]  Pang-Kuo Lo,et al.  Identification of a novel mouse p53 target gene DDA3 , 1999, Oncogene.

[52]  S. Okamura,et al.  Isolation and characterization of a novel TP53‐inducible gene, TP53TG3 , 1999, Genes, chromosomes & cancer.

[53]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[54]  S. Brenner Sillycon valley fever , 1999, Current Biology.

[55]  R. Iggo,et al.  Increased apoptosis induction by 121F mutant p53 , 1999, EMBO Journal.

[56]  J. W. Simpson,et al.  Gene expression analysis by transcript profiling coupled to a gene database query , 1999, Nature Biotechnology.

[57]  D. O’Rourke,et al.  Induction of the Tat-binding protein 1 gene accompanies the disabling of oncogenic erbB receptor tyrosine kinases. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Liang Factors ensuring successful use of differential display. , 1998, Methods.

[59]  Y. Nakamura,et al.  Isolation of a novel TP53 target gene from a colon cancer cell line carrying a highly regulated wild‐type TP53 expression system , 1998, Genes, chromosomes & cancer.

[60]  W. El-Deiry,et al.  Regulation of p53 downstream genes. , 1998, Seminars in cancer biology.

[61]  M. You,et al.  ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein , 1997, Molecular and cellular biology.

[62]  K. Kinzler,et al.  A model for p53-induced apoptosis , 1997, Nature.

[63]  D. Israeli,et al.  A novel p53‐inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis , 1997, The EMBO journal.

[64]  R. Sager Expression genetics in cancer: shifting the focus from DNA to RNA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  I. Krantz,et al.  KILLER/DR5 is a DNA damage–inducible p53–regulated death receptor gene , 1997, Nature Genetics.

[66]  James L. Winkler,et al.  Accessing Genetic Information with High-Density DNA Arrays , 1996, Science.

[67]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[68]  S. Velasco-Miguel,et al.  Induction of the growth inhibitor IGF-binding protein 3 by p53 , 1995, Nature.

[69]  Stephen J. Elledge,et al.  Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control , 1995, Cell.

[70]  J. Abraham,et al.  Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. , 1995, Genes & development.

[71]  J. Roth,et al.  Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression , 1995, Molecular and cellular biology.

[72]  D. Thorley-Lawson,et al.  A novel form of Epstein-Barr virus latency in normal B cells in vivo , 1995, Cell.

[73]  John Calvin Reed,et al.  Tumor suppressor p53 is a direct transcriptional activator of the human bax gene , 1995, Cell.

[74]  A. Pardee,et al.  Analysis of altered gene expression by differential display. , 1995, Methods in enzymology.

[75]  D. Beach,et al.  Cyclin G is a transcriptional target of the p53 tumor suppressor protein. , 1994, The EMBO journal.

[76]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[77]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[78]  Michael McClelland,et al.  Arbitrarily primed PCR fingerprinting of RNA. , 1992, Nucleic acids research.

[79]  A. Pardee,et al.  Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. , 1992, Science.

[80]  J. Craig Venter,et al.  Sequence identification of 2,375 human brain genes , 1992, Nature.

[81]  K. Kinzler,et al.  Oncogenic forms of p53 inhibit p53-regulated gene expression. , 1992, Science.

[82]  A. Kornberg Why purify enzymes? , 1990, Methods in enzymology.

[83]  T. Sargent Isolation of differentially expressed genes. , 1987, Methods in enzymology.

[84]  Mark M. Davis,et al.  Isolation of cDNA clones encoding T cell-specific membrane-associated proteins , 1984, Nature.

[85]  A. Pardee,et al.  Enhanced synthesis and stabilization of Mr 68,000 protein in transformed BALB/c-3T3 cells: candidate for restriction point control of cell growth. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Gallo,et al.  Abundant transcription of a cellular gene in T cells infected with human T-cell leukemia-lymphoma virus. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Chambon,et al.  Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. , 1982, Nucleic acids research.

[88]  William E. Timberlake,et al.  Molecular cloning and selection of genes regulated in aspergillus development , 1980, Cell.

[89]  A. Levine,et al.  Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells , 1979, Cell.

[90]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.