Initialization strategies for optimization of dynamic systems

Abstract For dynamic optimization applications, real-time solution reliability is improved if there is an initialized prior solution that is sufficiently close to the intended solution. This paper details several initialization strategies that are useful for obtaining an initial solution. Methods include warm start from a prior solution, linearization, structural decomposition, and an incremental unbounding of decision variables that leads up to solving the originally intended problem. Even when initialization is not required to solve a dynamic optimization problem, a staged initialization approach sometimes leads to an overall faster solution time when compared to a single optimization attempt. Several challenging optimization problems are detailed that include a high-index differential and algebraic equation pendulum model, a standard reactor model used in many benchmark tests, a tethered aerial vehicle, and smart grid energy storage. These applications are representative of a larger class of applications resulting from the simultaneous approach to optimization of dynamic systems.

[1]  L. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .

[2]  Michael Nikolaou,et al.  A parametric programming approach to moving-horizon state estimation , 2007, Autom..

[3]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive direct multiple shooting , 2014, Comput. Chem. Eng..

[4]  John D. Hedengren,et al.  An Optimized Simulation Model for Iron-Based Fischer-Tropsch Catalyst Design: Transfer Limitations as Functions of Operating and Design Conditions , 2015 .

[5]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[6]  L. Biegler,et al.  Nonlinear Programming Strategies for State Estimation and Model Predictive Control , 2009 .

[7]  Ping Lin,et al.  A Predicted Sequential Regularization Method for Index-2 Hessenberg DAEs , 2001, SIAM J. Numer. Anal..

[8]  Thomas F. Edgar,et al.  Approximate nonlinear model predictive control with in situ adaptive tabulation , 2008, Comput. Chem. Eng..

[9]  Tor Arne Johansen,et al.  Approximate explicit model predictive control incorporating heuristics , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[10]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[11]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[12]  Kody M. Powell,et al.  Nonlinear modeling, estimation and predictive control in APMonitor , 2014, Comput. Chem. Eng..

[13]  L. Biegler,et al.  Control and Optimization with Differential-Algebraic Constraints , 2012 .

[14]  Linda R. Petzold,et al.  Regularization of index-1 differential-algebraic equations with rank-deficient constraints , 1998 .

[15]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[16]  Efstratios N. Pistikopoulos,et al.  Simultaneous reduced order multi-parametric moving horizon estimation and model based control , 2013 .

[17]  Bart De Moor,et al.  An automatic initialization procedure in parameter estimation problems with parameter-affine dynamic models , 2010, Comput. Chem. Eng..

[18]  Seyed Mostafa Safdarnejad,et al.  Investigating the impact of Cryogenic Carbon Capture on power plant performance , 2015, 2015 American Control Conference (ACC).

[19]  Karl-Erik Årzén,et al.  Modeling and optimization with Optimica and JModelica.org - Languages and tools for solving large-scale dynamic optimization problems , 2010, Comput. Chem. Eng..

[20]  Lorenz T. Biegler,et al.  Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities , 2011 .

[21]  Jeffrey D. Kelly,et al.  A Steady-State Detection (SSD) Algorithm to Detect Non-Stationary Drifts in Processes , 2013 .

[22]  P. Daoutidis,et al.  Feedback control of nonlinear differential-algebraic-equation systems , 1995 .

[23]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[24]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[25]  Randal W. Beard,et al.  Optimal Trajectory Generation Using Model Predictive Control for Aerially Towed Cable Systems , 2014 .

[26]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[27]  Efstratios N. Pistikopoulos,et al.  Robust model-based tracking control using parametric programming , 2004, Comput. Chem. Eng..

[28]  Xuejin Yang,et al.  Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization , 2015 .

[29]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .

[30]  Zoltan K. Nagy,et al.  Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon , 2009 .

[31]  Shengtai Li,et al.  Sensitivity analysis of differential-algebraic equations and partial differential equations , 2005, Comput. Chem. Eng..

[32]  Pu Li,et al.  A Reduced-Space Interior-Point Quasi-Sequential Approach to Nonlinear Optimization of Large-Scale Dynamic Systems , 2010, RIVF.

[33]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[34]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[35]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[36]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[37]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[38]  Peter Piela Ascend: an object-oriented computer environment for modeling and analysis , 1989 .

[39]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[40]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[41]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[42]  Flavio Manenti,et al.  Differential and Differential-Algebraic Systems for the Chemical Engineer: Solving Numerical Problems , 2015 .

[43]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[44]  B. Finlayson,et al.  Orthogonal collocation on finite elements , 1975 .

[45]  Thomas F. Edgar,et al.  Order reduction of large scale DAE models , 2004, Comput. Chem. Eng..

[46]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[47]  Manfred Morari,et al.  Learning a feasible and stabilizing explicit model predictive control law by robust optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[48]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[49]  Joaquín Míguez,et al.  Analysis of a sequential Monte Carlo method for optimization in dynamical systems , 2010, Signal Process..

[50]  O. A. Asbjornsen,et al.  Simultaneous optimization and solution of systems described by differential/algebraic equations , 1987 .

[51]  Jean Utke,et al.  Advances in Automatic Differentiation , 2008 .

[52]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[53]  Seyed Mostafa Safdarnejad,et al.  Plant-level Dynamic Optimization of Cryogenic Carbon Capture with Conventional and Renewable Power Sources , 2015 .

[54]  Juergen Hahn,et al.  Reduction of stable differential–algebraic equation systems via projections and system identification , 2005 .

[55]  Uri M. Ascher,et al.  Sequential Regularization Methods for Higher Index DAEs with Constraint Singularities: The Linear Index-2 Case , 1996 .

[56]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[57]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[58]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[59]  Flavio Manenti,et al.  Generalized Classes for Lower Levels of Supply Chain Management: Object-Oriented Approach , 2010 .

[60]  B. Bequette,et al.  Control-relevant dynamic data reconciliation and parameter estimation , 1993 .

[61]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[62]  Alberto Bemporad,et al.  Multiparametric nonlinear integer programming and explicit quantized optimal control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[63]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[64]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[65]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[66]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..