Multi-Level Morphometric Characterization of Built-up Areas and Change Detection in Siberian Sub-Arctic Urban Area: Yakutsk

Recognition and characterization of built-up areas in the Siberian sub-Arctic urban territories of Yakutsk are dependent on two main factors: (1) the season (snow and ice from October to the end of April, the flooding period in May, and the summertime), which influences the accuracy of urban object detection, and (2) the urban structure, which influences the morphological recognition and characterization of built-up areas. In this study, high repetitiveness remote sensing Sentinel-2A and SPOT 6 high-resolution satellite images were combined to characterize and detect urban built-up areas over the city of Yakutsk. High temporal resolution of Sentinel-2A allows land use change detection and metric spatial resolution of SPOT 6 allows the characterization of built-up areas’ socioeconomic functions and uses.

[1]  Huadong Guo,et al.  A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery , 2017, Remote. Sens..

[2]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[3]  S. Vigneshwaran,et al.  Urban Land Cover Mapping and Change Detection Analysis Using High Resolution Sentinel-2A Data , 2018, Environment and Natural Resources Journal.

[4]  Walid Ouerghemmi,et al.  Morpho-spectral objects classification by hyperspectral airborne imagery , 2016, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[5]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[6]  Hurtado Abril,et al.  Generación de un índice espectro-temporal para la identificación de zonas afectadas por deforestación usando imágenes Landsat. , 2020 .

[7]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[8]  Jon Atli Benediktsson,et al.  Remote Sensing Image Classification Using Attribute Filters Defined Over the Tree of Shapes , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Diane M. Styers,et al.  Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data , 2011, Remote. Sens..

[10]  Xiuping Jia,et al.  Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  I. Hegazy,et al.  Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt , 2015 .

[12]  Karsten Schulz,et al.  USING MORPHOLOGICAL DIFFERENTIAL ATTRIBUTE PROFILES FOR CHANGE CATEGORIZATION IN HIGH RESOLUTION SAR IMAGES , 2013 .

[13]  Waqar Mirza Muhammad Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data , 2012 .

[14]  Ran Goldblatt,et al.  Utilizing publicly available satellite data for urban research: Mapping built-up land cover and land use in Ho Chi Minh City, Vietnam , 2018 .

[15]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[16]  S. Freden,et al.  Third Earth Resources Technology Satellite-1 Symposium- Volume I: Technical Presentations. NASA SP-351 , 1974 .

[17]  Stéphane Dupuy,et al.  An Object-Based Image Analysis Method for Monitoring Land Conversion by Artificial Sprawl Use of RapidEye and IRS Data , 2012, Remote. Sens..

[18]  Xiao Xiang Zhu,et al.  Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[19]  L. Deng,et al.  Monitoring spatial patterns and changes of surface net radiation in urban and suburban areas using satellite remote-sensing data , 2017 .

[20]  Hugues Talbot,et al.  Mathematical morphology: A useful set of tools for image analysis , 2000, Stat. Comput..

[21]  Deodato Tapete,et al.  Urban remote sensing in areas of conflict: TerraSAR-X and Sentinel-1 change detection in the Middle East , 2016, International Conference on Remote Sensing and Geoinformation of Environment.

[22]  P. Murugan,et al.  Assessment of Surface Water Dynamicsin Bangalore Using WRI, NDWI, MNDWI, Supervised Classification and K-T Transformation☆ , 2015 .

[23]  Geoffrey J. Hay,et al.  Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline , 2008 .

[24]  Christophe Collet,et al.  Connected image processing with multivariate attributes: An unsupervised Markovian classification approach , 2015, Comput. Vis. Image Underst..

[25]  Stuart K. McFeeters,et al.  Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach , 2013, Remote. Sens..

[26]  R. Escadafal,et al.  Remote sensing of arid soil surface color with Landsat thematic mapper , 1989 .

[27]  Mohammadmehdi Saberioon,et al.  Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging , 2018, Remote Sensing of Environment.

[28]  I. Wayan Nuarsa,et al.  Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area , 2012, Remote. Sens..

[29]  Walid Ouerghemmi,et al.  MORPHO-SPECTRAL RECOGNITION OF DENSE URBAN OBJECTS BY HYPERSPECTRAL IMAGERY , 2015 .

[30]  Ming Zhong,et al.  Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data , 2012, Remote. Sens..

[31]  Alejandro Téllez-Quiñones,et al.  Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Knut Conradsen,et al.  Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series , 2016, Remote. Sens..

[33]  Peshawa M. Najmaddin,et al.  Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates , 2018, Land.

[34]  Biswajeet Pradhan,et al.  Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran , 2014, TheScientificWorldJournal.

[35]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[36]  V. Lukas,et al.  Assessment of Soil Variability of South Moravian Region Based on the Satellite Imagery , 2018, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.

[37]  Xiaoqing Wu,et al.  Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations , 2015, Geo spatial Inf. Sci..

[38]  K. Malarvizhi,et al.  Use of High Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications , 2016 .

[39]  Jun Li,et al.  Urban Land Use Change Detection Using Multisensor Satellite Images , 2009 .

[40]  S. Bacha,et al.  Strategy for the dynamic study of desertification , 1996 .

[41]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[42]  C. Deng,et al.  BCI: A biophysical composition index for remote sensing of urban environments , 2012 .

[43]  David J. Mulla,et al.  Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco , 2017 .

[44]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[45]  Yaolin Liu,et al.  ANALYZING THE SHAPE CHARACTERISTICS OF LAND USE CLASSES IN REMOTE SENSING IMAGERY , 2012 .

[46]  Christophe Sannier,et al.  Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree , 2016, Remote. Sens..

[47]  Claire Marais-Sicre,et al.  Early Detection of Summer Crops Using High Spatial Resolution Optical Image Time Series , 2016, Remote. Sens..

[48]  Jay Gao,et al.  Use of normalized difference built-up index in automatically mapping urban areas from TM imagery , 2003 .

[49]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .