Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.

[1]  E. Swanner,et al.  The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle , 2014, Nature Reviews Microbiology.

[2]  James M. Ross,et al.  In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey. , 2014, Environmental chemistry.

[3]  J. Jumas,et al.  Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation , 2014 .

[4]  A. Kappler,et al.  Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil. , 2013, Environmental science & technology.

[5]  R. Kukkadapu,et al.  Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002 , 2013 .

[6]  A. Kappler,et al.  Fate of arsenic during microbial reduction of biogenic versus Abiogenic As-Fe(III)-mineral coprecipitates. , 2013, Environmental science & technology.

[7]  S. Chillrud,et al.  Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid. , 2012, Geochimica et cosmochimica acta.

[8]  K. Porsch,et al.  Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. , 2012, Environmental science & technology.

[9]  A. Kappler,et al.  Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. , 2012, Environmental science & technology.

[10]  K. Porsch,et al.  Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations , 2011 .

[11]  E. Yanful,et al.  Arsenic removal from aqueous solutions by mixed magnetite–maghemite nanoparticles , 2011 .

[12]  J. Guigner,et al.  Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1 , 2011 .

[13]  T. Onstott,et al.  Precipitation of Arsenic under Sulfate Reducing Conditions and Subsequent Leaching Under Aerobic Conditions , 2011 .

[14]  B. Bostick,et al.  Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite , 2010 .

[15]  P. larese-casanova,et al.  Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids , 2010 .

[16]  K. Porsch,et al.  In-situ magnetic susceptibility measurements as a tool to follow geomicrobiological transformation of Fe minerals. , 2010, Environmental science & technology.

[17]  B. Bostick,et al.  Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. , 2009, Environmental science & technology.

[18]  C. Koch,et al.  The standard Gibbs energy of formation of Fe(II)Fe(III) hydroxide sulfate green rust , 2008 .

[19]  F. Guyot,et al.  Arsenite sorption at the magnetite water interface during aqueous precipitation of magnetite: EXAFS evidence for a new arsenite surface complex , 2008 .

[20]  K. Nüsslein,et al.  Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. , 2007, Chemosphere.

[21]  M. Stute,et al.  Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. , 2007, Environmental science & technology.

[22]  Lara Duro,et al.  Arsenic sorption onto natural hematite, magnetite, and goethite. , 2007, Journal of hazardous materials.

[23]  J. Lloyd,et al.  XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. , 2006, Environmental science & technology.

[24]  R. Jakobsen,et al.  Release of arsenic associated with the reduction and transformation of iron oxides , 2006 .

[25]  Robert Marvinney,et al.  Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA , 2006 .

[26]  Mason B. Tomson,et al.  Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate , 2005 .

[27]  James M. Ross,et al.  Naturally occurring arsenic: Mobilization at a landfill in Maine and implications for remediation , 2005 .

[28]  S. Benner,et al.  Competing Fe (II)-induced mineralization pathways of ferrihydrite. , 2005, Environmental science & technology.

[29]  D. Newman,et al.  Isolation and Characterization of a Genetically Tractable Photoautotrophic Fe(II)-Oxidizing Bacterium, Rhodopseudomonas palustris Strain TIE-1 , 2005, Applied and Environmental Microbiology.

[30]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[31]  R. Root,et al.  The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Janet G Hering,et al.  Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. , 2003, Environmental science & technology.

[33]  W. D. Burgos,et al.  Effects of Zn(II), Cu(II), Mn(II), Fe(II), NO3−, or SO42− at pH 6.5 and 8.5 on transformations of hydrous ferric oxide (HFO) as evidenced by Mössbauer spectroscopy , 2003 .

[34]  R. Wilkin,et al.  Speciation of arsenic in sulfidic waters , 2003, Geochemical transactions.

[35]  E. Tronc,et al.  Synthesis of iron oxide-based magnetic nanomaterials and composites , 2002 .

[36]  H. Hemond,et al.  Nitrate Controls on Iron and Arsenic in an Urban Lake , 2002, Science.

[37]  S. Benner,et al.  Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. , 2002, Environmental science & technology.

[38]  J. Hering,et al.  Deposition and fate of arsenic in iron- and arsenic-enriched reservoir sediments. , 2002, Environmental science & technology.

[39]  J. Coates,et al.  Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II) , 2001, Applied and Environmental Microbiology.

[40]  C. Swartz,et al.  Validation of an arsenic sequential extraction method for evaluating mobility in sediments. , 2001, Environmental science & technology.

[41]  R. H. Loeppert,et al.  Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes , 1998 .

[42]  F. Widdel,et al.  Anaerobic, nitrate-dependent microbial oxidation of ferrous iron , 1996, Applied and Environmental Microbiology.

[43]  U. Schwertmann,et al.  Iron Oxides in Laboratory , 1993 .

[44]  E. Tronc,et al.  Influence of Fe(II) on the Formation of the Spinel Iron Oxide in Alkaline Medium , 1992 .

[45]  J. Bowles Iron Oxides in the Laboratory , 1992, Mineralogical Magazine.

[46]  B. Maher Magnetic properties of some synthetic sub-micron magnetites , 1988 .

[47]  A. Kappler,et al.  Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. , 2010, Environmental science & technology.

[48]  D. Burris,et al.  Geochemical processes controlling arsenic mobility in groundwater: a case study of arsenic mobilization and natural attenuation. , 2010 .

[49]  Redox Transformation of Arsenic by Fe ( II )-Activated Goethite ( r-FeOOH ) , 2009 .

[50]  C. Renshaw,et al.  Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH). , 2006, Environmental science & technology.

[51]  D. C. Cooper,et al.  Zinc Immobilization and Magnetite Formation via Ferric Oxide Reduction by Shewanella putrefaciens 200 , 2000 .

[52]  E. Tronc,et al.  Transformation of ferric hydroxide into spinel by iron(II) adsorption , 1992 .

[53]  L. H. Bowen,et al.  Mössbauer spectroscopy. , 1988, Analytical chemistry.

[54]  P. Scherrer,et al.  Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen , 1918 .