Unions of Fat Convex Polytopes Have Short Skeletons

The skeleton of a polyhedral set is the union of its edges and vertices. Let $\mathcal {P}$ be a set of fat, convex polytopes in three dimensions with n vertices in total, and let fmax be the maximum complexity of any face of a polytope in $\mathcal {P}$. We prove that the total length of the skeleton of the union of the polytopes in $\mathcal {P}$ is at most O(α(n)⋅log∗n⋅logfmax) times the sum of the skeleton lengths of the individual polytopes.

[1]  Micha Sharir,et al.  The Union of Congruent Cubes in Three Dimensions , 2003, Discret. Comput. Geom..

[2]  Micha Sharir,et al.  Improved bound for the union of fat triangles , 2011, SODA '11.

[3]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[4]  Mark H. Overmars,et al.  The Complexity of the Free Space for a Robot Moving Amidst Fat Obstacles , 1992, Comput. Geom..

[5]  Micha Sharir,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..

[6]  Micha Sharir,et al.  Improved Bounds for the Union of Locally Fat Objects in the Plane , 2014, SIAM J. Comput..

[7]  R. Pollack,et al.  Surveys on discrete and computational geometry : twenty years later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah , 2008 .

[8]  Mark H. Overmars,et al.  Motion planning amidst fat obstacles (extended abstract) , 1994, SCG '94.

[9]  Micha Sharir,et al.  On the union of fat tetrahedra in three dimensions , 2009, JACM.

[10]  Mark de Berg,et al.  Vertical ray shooting and computing depth orders of fat objects , 2008 .

[11]  A. Macbeath An extremal property of the hypersphere , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Mariette Yvinec,et al.  Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1998, Discret. Comput. Geom..

[13]  Seth Pettie,et al.  On the structure and composition of forbidden sequences, with geometric applications , 2011, SoCG '11.

[14]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[15]  Mark de Berg Improved Bounds on the Union Complexity of Fat Objects , 2008, Discret. Comput. Geom..

[16]  Micha Sharir,et al.  Almost Tight Bound for the Union of Fat Tetrahedra in Three Dimensions , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[17]  János Pach,et al.  On the Boundary Complexity of the Union of Fat Triangles , 2002, SIAM J. Comput..

[18]  Prosenjit Bose,et al.  On the sectional area of convex polytopes , 1996, SCG '96.

[19]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[20]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .