Distributed evolutionary Monte Carlo for Bayesian computing

Sampling from a multimodal and high-dimensional target distribution posits a great challenge in Bayesian analysis. A new Markov chain Monte Carlo algorithm Distributed Evolutionary Monte Carlo (DGMC) is proposed for real-valued problems, which combines the attractive features of the distributed genetic algorithm and the Markov chain Monte Carlo. The DGMC algorithm evolves a population of Markov chains through some genetic operators to simulate the target function. Theoretical justification proves that the DGMC algorithm has the target function as its stationary distribution. The effectiveness of the DGMC algorithm is illustrated by simulating two multimodal distributions and an application to a real data example.

[1]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[2]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[3]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[4]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[5]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[8]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[9]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[10]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[11]  G. Roberts,et al.  Convergence of adaptive direction sampling , 1994 .

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[13]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  Kathryn B. Laskey,et al.  Population Markov Chain Monte Carlo , 2004, Machine Learning.

[16]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[17]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[19]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .