Minimum error entropy Luenberger observer

In this paper, we apply the information-theoretic learning (ITL) technique to the extended Luenberger observer. Instead of prespecifying the globally stable observer gains for nonlinear dynamic systems, we propose minimizing the entropy of the error between the measurement and the estimated output to update the observer gains. A stochastic gradient-based algorithm is presented and the performance of the entropy observer is demonstrated on linear and nonlinear dynamic systems. We also point out that this approach leads to the introduction of kernel methods into state estimation.

[1]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Deniz Erdogmus,et al.  A Neural Network Perspective to Extended Luenberger Observers , 2002 .

[4]  Terrence P. McGarty Stochastic systems and state estimation , 1974 .

[5]  H. Zelaya De La Parra,et al.  Application of a full-order extended Luenberger observer for a position sensorless operation of a switched reluctance motor drive , 1996 .

[6]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[7]  Thomas Kailath,et al.  Linear Systems , 1980 .

[8]  K. Loparo,et al.  Optimal state estimation for stochastic systems: an information theoretic approach , 1997, IEEE Trans. Autom. Control..

[9]  Deniz Erdoğmuş,et al.  Towards a unification of information theoretic learning and kernel methods , 2004, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004..

[10]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[11]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  D. Luenberger Observers for multivariable systems , 1966 .

[14]  Deniz Erdoğmuş,et al.  Online entropy manipulation: stochastic information gradient , 2003, IEEE Signal Processing Letters.

[15]  Deniz Erdogmus,et al.  Convergence properties and data efficiency of the minimum error entropy criterion in ADALINE training , 2003, IEEE Trans. Signal Process..

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  D. Luenberger An introduction to observers , 1971 .

[18]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[19]  M. A. Brdys,et al.  Implementation of extended Luenberger observers for joint state and parameter estimation of PWM induction motor drive , 2002 .

[20]  Deniz Erdogmus,et al.  An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems , 2002, IEEE Trans. Signal Process..