A Fuzzy Set-Based Approach to Multi-objective Multi-item Solid Transportation Problem Under Uncertainty

In this paper, a multi-objective multi-item solid transportation problem (MOMISTP) with parameters, e.g., transportation costs, supplies, and demands, as trapezoidal fuzzy variables is formulated. In this MOMISTP, there are limitations on some items and conveyances so that some special items cannot be carried by means of some special conveyances. With the use of the nearest interval approximation of trapezoidal fuzzy numbers, an interval programming model is constructed for the fuzzy MOMISTP and then this model is turned into its deterministic form. Then, a new interval fuzzy programming approach is developed to obtain the optimal solution of the problem. Finally, a numerical example is presented for illustration.

[1]  Seyed Hossein Razavi Hajiagha,et al.  Multi-objective linear programming with interval coefficients: A fuzzy set based approach , 2013, Kybernetes.

[2]  Mehdi Allahdadi,et al.  The optimal solution set of the interval linear programming problems , 2012, Optimization Letters.

[3]  Amelia Bilbao-Terol,et al.  Pareto-optimal solutions in fuzzy multi-objective linear programming , 2009, Fuzzy Sets Syst..

[4]  Guohe Huang,et al.  A GREY LINEAR PROGRAMMING APPROACH FOR MUNICIPAL SOLID WASTE MANAGEMENT PLANNING UNDER UNCERTAINTY , 1992 .

[5]  Manoranjan Maiti,et al.  Fully fuzzy fixed charge multi-item solid transportation problem , 2015, Appl. Soft Comput..

[6]  D. Y. Miao,et al.  Planning Water Resources Systems under Uncertainty Using an Interval-Fuzzy De Novo Programming Method , 2015 .

[7]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[8]  M. Gen,et al.  Solving bicriteria solid transportation problem with fuzzy numbers by a genetic algorithm , 1995 .

[9]  K. B. Haley,et al.  New Methods in Mathematical Programming---The Solid Transportation Problem , 1962 .

[10]  Carlos Henggeler Antunes,et al.  Multiple objective linear programming models with interval coefficients - an illustrated overview , 2007, Eur. J. Oper. Res..

[11]  Dorota Kuchta,et al.  A modification of a solution concept of the linear programming problem with interval coefficients in the constraints , 2008, Central Eur. J. Oper. Res..

[12]  P. Anukokila,et al.  Fractional Goal Programming for Fuzzy Solid Transportation Problem with Interval Cost , 2014 .

[13]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[14]  M. Gen,et al.  Improved Genetic Algorithm for Solving Multiobjective Solid Transportation Problem with Fuzzy Numbers , 1997 .

[15]  M. P. Biswal,et al.  Fuzzy programming approach to multiobjective solid transportation problem , 1993 .

[16]  Reza Tavakkoli-Moghaddam,et al.  Solving a fuzzy fixed charge solid transportation problem by metaheuristics , 2013, Math. Comput. Model..

[17]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[18]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[19]  Seyed Hossein Razavi Hajiagha,et al.  A multiobjective programming approach to solve grey linear programming , 2012, Grey Syst. Theory Appl..

[20]  Jiuping Xu,et al.  A class of rough multiple objective programming and its application to solid transportation problem , 2012, Inf. Sci..

[21]  Fernando Jiménez,et al.  Uncertain solid transportation problems , 1998, Fuzzy Sets Syst..

[22]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[23]  A. Baidya,et al.  An interval valued solid transportation problem with budget constraint in different interval approaches , 2014 .

[24]  Mao-Jiun J. Wang,et al.  Ranking fuzzy numbers with integral value , 1992 .

[25]  Pei Liu,et al.  Reduction methods of type-2 uncertain variables and their applications to solid transportation problem , 2015, Inf. Sci..

[26]  A. Goswami,et al.  Multiobjective transportation problem with interval cost, source and destination parameters , 1999, Eur. J. Oper. Res..

[27]  Manoranjan Maiti,et al.  Multi-objective solid transportation problem in imprecise environments , 2013, Journal of Transportation Security.

[28]  Manoranjan Maiti,et al.  A fuzzy MCDM method and an application to solid transportation problem with mode preference , 2014, Soft Comput..

[29]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[30]  Przemyslaw Grzegorzewski,et al.  Nearest interval approximation of a fuzzy number , 2002, Fuzzy Sets Syst..

[31]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[32]  Amit Kumar,et al.  Method for solving unbalanced fully fuzzy multi-objective solid minimal cost flow problems , 2012, Applied Intelligence.

[33]  Dipankar Chakraborty,et al.  Multi-objective multi-item solid transportation problem with fuzzy inequality constraints , 2014, Journal of Inequalities and Applications.

[34]  S. Kar,et al.  Multi-objective multi-item solid transportation problem in fuzzy environment , 2013 .

[35]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[36]  Mitsuo Gen,et al.  Neural network approach for multicriteria solid transportation problem , 1997 .

[37]  Guo H. Huang,et al.  An Interval-Parameter Fuzzy Approach for Multiobjective Linear Programming Under Uncertainty , 2007, J. Math. Model. Algorithms.

[38]  Vincent F. Yu,et al.  An interactive approach for the multi-objective transportation problem with interval parameters , 2015 .

[39]  Pei Liu,et al.  A solid transportation problem with type-2 fuzzy variables , 2014, Appl. Soft Comput..

[40]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[41]  José L. Verdegay,et al.  Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach , 1999, Eur. J. Oper. Res..