Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation

The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.

Alfredo Pironti | K. Shimizu | J. Vega | E. Joffrin | Lorenzo Figini | G. Granucci | David Douai | S. Saarelma | Paolo Bettini | Filippo Sartori | Stefano Coda | C. Sozzi | Tommaso Bolzonella | G. Giruzzi | Go Matsunaga | Shinichi Moriyama | Peter Lang | T. Szepesi | Nuno Cruz | Fabio Villone | G. De Tommasi | S. Mastrostefano | M. Wischmeier | A. Boboc | E. de la Luna | K. Galazka | Paolo Innocente | Massimo Mattei | D. C. McDonald | R. Neu | F. P. Orsitto | D. Ricci | S. Soare | Paola Platania | T. P. Goodman | M. Enoeda | S. Clement-Lorenzo | J. Garcia | L. Garzotti | R. Zagórski | Patrick Maget | Akihiko Isayama | A. Mele | M. Garcia-Munoz | C. Day | Y. Kamada | Hajime Urano | David Terranova | L. Pigatto | Alessandro Moro | S. Sakurai | Daniel Dunai | M. Scannapiego | Shunsuke Ide | E. Barbato | Brigitte Pegourie | J. F. Artaud | Y. Miyata | W. Stepniewski | J. Vega | S. Coda | T. Goodman | R. Neu | J. Garcia | J. Artaud | Y. Kamada | G. Giruzzi | S. Ide | N. Hayashi | E. Joffrin | P. Lang | E. D. L. Luna | D. McDonald | S. Saarelma | V. Vitale | P. Maget | B. Pégourié | C. Sozzi | M. Romanelli | L. Garzotti | M. Wischmeier | R. Zagórski | E. Barbato | H. Urano | T. Bolzonella | P. Platania | F. Villone | P. Bettini | A. Pironti | M. Mattei | A. Isayama | M. Takechi | L. Figini | T. Suzuki | G. Granucci | S. Moriyama | S. Nowak | A. Moro | T. Szepesi | C. Day | P. Lauber | M. Yoshida | F. Sartori | G. Tommasi | S. Soare | A. Boboc | F. Orsitto | K. Gałązka | D. Douai | S. Sakurai | M. Garcia-Muñoz | D. Ricci | K. Shinohara | P. Innocente | D. Terranova | G. Matsunaga | L. Pigatto | H. Kawashima | K. Shimizu | T. Nakano | H. Kubo | K. Hoshino | T. Kobayashi | M. Enoeda | S. Mastrostefano | N. Cruz | D. Dunai | K. Kamiya | Hisato Kawashima | N. Hayashi | S. Nowak | T. Nakano | Kouji Shinohara | Katsumichi Hoshino | V. Vitale | Y. Miyata | M. Yoshida | A. Bierwage | Manabu Takechi | T. T. Suzuki | H. Kubo | K. Kamiya | T. Kobayashi | A. Bierwage | M. Romanelli | Ph. Lauber | C. Gleason-Gonzalez | W. Stępniewski | A. Mele | C. Gleason-González | M. Scannapiego | S. Clement-Lorenzo | E. L. Luna | T. Suzuki | T. Kobayashi

[1]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[2]  R. Albanese,et al.  The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks , 1998 .

[3]  Tomonori Takizuka,et al.  Simulation of divertor detachment characteristics in JT-60 with superconducting coils , 2003 .

[4]  M. Ariola,et al.  Plasma shape control for the JET tokamak: an optimal output regulation approach , 2005, IEEE Control Systems.

[5]  M. Takechi,et al.  Nonlocal energetic particle mode in a JT-60U plasma , 2005 .

[6]  Atsushi Fukuyama,et al.  Comparison of turbulent transport models of L- and H-mode plasmas , 2006 .

[7]  Shinji Tokuda,et al.  Extension of the Newcomb equation into the vacuum for the stability analysis of tokamak edge plasmas , 2006, Comput. Phys. Commun..

[8]  B. Pégourié,et al.  Homogenization of the pellet ablated material in tokamaks taking into account the ∇B-induced drift , 2006 .

[9]  Sibylle Günter,et al.  LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks , 2007, J. Comput. Phys..

[10]  Daniela Farina,et al.  A Quasi-Optical Beam-Tracing Code for Electron Cyclotron Absorption and Current Drive: GRAY , 2007 .

[11]  R. J. Groebner,et al.  Development and validation of a predictive model for the pedestal height , 2008 .

[12]  I. T. Chapman,et al.  Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode , 2008 .

[13]  E. A. Lazarus,et al.  V3FIT: a code for three-dimensional equilibrium reconstruction , 2009 .

[14]  Nobuhiko Hayashi,et al.  Advanced tokamak research with integrated modeling in JT-60 Upgradea) , 2010 .

[15]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[16]  P. Barabaschi,et al.  Plasma regimes and research goals of JT-60SA towards ITER and DEMO , 2011 .

[17]  S. Zoletnik,et al.  Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas. , 2012, The Review of scientific instruments.

[18]  Alfredo Pironti,et al.  GPU-accelerated analysis of vertical instabilities in ITER including three-dimensional volumetric conducting structures , 2012 .

[19]  T. Szepesi,et al.  EDICAM (Event Detection Intelligent Camera) , 2013 .

[20]  Fabio Villone,et al.  Coupling of nonlinear axisymmetric plasma evolution with three-dimensional volumetric conductors , 2013 .

[21]  Hajime Urano,et al.  Study of Plasma Equilibrium Control for JT-60SA using MECS , 2014 .

[22]  S. Ide,et al.  3D plasma response to resonant external magnetic perturbation and its impact on fast ion confinement in JT-60SA plasmas , 2014 .

[23]  Y. Igitkhanov,et al.  Towards a physics-integrated view on divertor pumping , 2014 .

[24]  G. Giruzzi,et al.  Physics comparison and modelling of the JET and JT-60U core and edge: towards JT-60SA predictions , 2014 .

[25]  S. Ide,et al.  Simulation of plasma current ramp-up with reduced magnetic flux consumption in JT-60SA , 2014 .

[26]  K. Yokokura,et al.  Mechanical and quasi-optical design of ECH/ECCD launcher for JT-60SA , 2015 .

[27]  R. Felton,et al.  Invited Article: A novel calibration method for the JET real-time far infrared polarimeter and integration of polarimetry-based line-integrated density measurements for machine protection of a fusion plant. , 2015, The Review of scientific instruments.

[28]  M. Cavinato,et al.  Experiments and modeling on FTU tokamak for EC assisted plasma start-up studies in ITER-like configuration , 2015 .

[29]  C. Sozzi,et al.  Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna , 2015 .

[30]  T. Fujita,et al.  Development of operation scenarios for plasma breakdown and current ramp-up phases in JT-60SA tokamak , 2015 .

[31]  E. Joffrin,et al.  Requirements for tokamak remote operation: Application to JT-60SA , 2015 .

[32]  B. P. Duval,et al.  Design and first applications of the ITER integrated modelling & analysis suite , 2015 .

[33]  Paolo Bettini,et al.  Three-dimensional analysis of JT-60SA conducting structures in view of RWM control , 2015 .

[34]  N. Asakura,et al.  Simulation of Radiative Divertor Plasmas by Ar Seeding with the Full W‐Wall in JT‐60SA , 2016 .

[35]  N. Asakura,et al.  Simulation of collisional effects on divertor pumping in JT-60SA , 2016 .

[36]  H Kubo,et al.  Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA. , 2016, The Review of scientific instruments.

[37]  J. Garcia,et al.  Resistive Wall Mode Stability in JT-60 SA High β N Scenarios , 2016 .

[38]  F. Villone,et al.  Nonlinear 3 D analysis of JT-60 SA n = 0 instabilities , 2016 .

[39]  Takahisa Ozeki,et al.  Progress on ITER remote experimentation centre , 2016 .

[40]  林 伸彦,et al.  Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation , 2016 .

[41]  Peter Lang,et al.  Conceptual design of the JT-60SA pellet launching system , 2016 .

[42]  G. Giruzzi,et al.  Numerical analyses of JT-60SA scenarios with the COREDIV code , 2015 .

[43]  P. Barabaschi,et al.  Progress of JT-60SA Project: EU-JA joint efforts for assembly and fabrication of superconducting tokamak facilities and its research planning , 2016 .

[44]  M. C. Jiménez-Ramos,et al.  Conceptual design of the ITER fast-ion loss detector. , 2016, The Review of scientific instruments.

[45]  Investigation of sustainable high-β scenarios in the JT-60SA C-wall , 2017 .

[46]  R. Neu,et al.  Numerical analyses of baseline JT-60SA design concepts with the COREDIV code , 2017 .

[47]  P. Barabaschi,et al.  Recent progress of the JT-60SA project , 2017 .

[48]  S. Coda,et al.  Electron cyclotron stray radiation detection and machine protection system proposal for JT-60SA , 2017 .

[49]  S. Kellie,et al.  Overview of the Immune System , 2017 .

[50]  K. Kamiya,et al.  Feasibility study on the JT-60SA tokamak beam emission spectroscopy diagnostics , 2017 .

[51]  Olivier Sauter,et al.  Securing High-βN JT-60SA Operational Space by MHD Stability and Active Control Modelling , 2017 .

[52]  R. Neu,et al.  Numerical analyses of JT-60SA tokamak with tungsten divertor by COREDIV code , 2017 .

[53]  S. Coda,et al.  Development of helium electron cyclotron wall conditioning on TCV , 2018 .