Nonnegative Diagonals and High Performance on Low-Profile Matrices from Householder QR
暂无分享,去创建一个
[1] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[2] John W. Eaton,et al. Gnu Octave Manual , 2002 .
[3] Douglas M. Priest. Efficient scaling for complex division , 2004, TOMS.
[4] Jack J. Dongarra,et al. Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.
[5] James Demmel,et al. Communication-avoiding parallel and sequential QR factorizations , 2008, ArXiv.
[6] B. Parlett. Analysis of Algorithms for Reflections in Bisectors , 1971 .
[7] Karen S. Braman,et al. The Multishift QR Algorithm. Part II: Aggressive Early Deflation , 2001, SIAM J. Matrix Anal. Appl..
[8] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[9] James Demmel,et al. Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers , 2008, SIAM J. Sci. Comput..
[10] Karen S. Braman,et al. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..
[11] William Kahan. Why do we need a oating-point arithmetic standard? , 1981 .