Boosting performance and stability of inverted perovskite solar cells by modulating the cathode interface with phenyl phosphine-inlaid semiconducting polymer

[1]  Hongkai Wu,et al.  Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. , 2021, Journal of the American Chemical Society.

[2]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[3]  Liyuan Han,et al.  Efficiency progress of inverted perovskite solar cells , 2020 .

[4]  Xiaoqing Pan,et al.  2D metal–organic framework for stable perovskite solar cells with minimized lead leakage , 2020, Nature Nanotechnology.

[5]  Qi Chen,et al.  Towards commercialization: the operational stability of perovskite solar cells. , 2020, Chemical Society reviews.

[6]  Muhammad Umair Ali,et al.  Gaining Insight into the Effect of Organic Interface Layer on Suppressing Ion Migration Induced Interfacial Degradation in Perovskite Solar Cells , 2020, Advanced Functional Materials.

[7]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[8]  Oskar J. Sandberg,et al.  On the Origin of the Ideality Factor in Perovskite Solar Cells , 2020, Advanced Energy Materials.

[9]  W. Qian,et al.  A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity , 2020, Nature Communications.

[10]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[11]  Yiwang Chen,et al.  Enhanced performance and stability of p–i–n perovskite solar cells by utilizing an AIE-active cathode interlayer , 2019, Journal of Materials Chemistry A.

[12]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[13]  Qing Sun,et al.  Enhancing the Open‐Circuit Voltage of Perovskite Solar Cells by up to 120 mV Using π‐Extended Phosphoniumfluorene Electrolytes as Hole Blocking Layers , 2019, Advanced Energy Materials.

[14]  X. Zhan,et al.  Nonfullerene n‐Type Organic Semiconductors for Perovskite Solar Cells , 2019, Advanced Energy Materials.

[15]  Jingsheng Chen,et al.  20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis , 2019, Energy & Environmental Science.

[16]  Wenzhu Liu,et al.  Triarylphosphine Oxide as Cathode Interfacial Material for Inverted Perovskite Solar Cells , 2019, Advanced Materials Interfaces.

[17]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[18]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[19]  Furkan H. Isikgor,et al.  Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells , 2019, Journal of Materials Chemistry A.

[20]  Derek J Durand,et al.  Computational Ligand Descriptors for Catalyst Design. , 2019, Chemical reviews.

[21]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[22]  David Cahen,et al.  Halide Perovskites: Is It All about the Interfaces? , 2018, Chemical reviews.

[23]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[24]  S. So,et al.  Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor , 2018, Nano Energy.

[25]  Fei Wu,et al.  Naphthodiperylenetetraimide-Based Polymer as Electron-Transporting Material for Efficient Inverted Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[26]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[27]  Zhuoying Chen,et al.  Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells , 2018, ACS omega.

[28]  K. Wong,et al.  Metal Oxide CrOx as a Promising Bilayer Electron Transport Material for Enhancing the Performance Stability of Planar Perovskite Solar Cells , 2018 .

[29]  Changhee Lee,et al.  Analysis of Ion‐Diffusion‐Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode , 2018 .

[30]  Fei Wu,et al.  Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells , 2018 .

[31]  Shihe Yang,et al.  Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells , 2018 .

[32]  Muhammad Umair Ali,et al.  A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells , 2018 .

[33]  Tingting Li,et al.  Reduced Interface Losses in Inverted Perovskite Solar Cells by Using a Simple Dual-Functional Phenanthroline Derivative , 2018 .

[34]  Shangfeng Yang,et al.  Nonconjugated Polymer Poly(vinylpyrrolidone) as an Efficient Interlayer Promoting Electron Transport for Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[35]  Wenjun Zhang,et al.  Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells , 2017 .

[36]  T. Hayat,et al.  Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[37]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[38]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[39]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[40]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[41]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[42]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[43]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[44]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.