Quantitative Relationships for Acoustic Emission from Orthogonal Metal Cutting

Theoretical relationships have been drawn between acoustic emission (AE) and the metal cutting process parameters by relating the energy content of the AE signal to the plastic work of deformation which generates the emission signals. The RMS value of the emission signal is expressed in terms of the basic cutting parameters. Results are presented for 6061-T6 aluminum and SAE 1018 steel over the range of speeds 25.2 to 372 sfm (0.128 to 1.9 m/s) and rake angles 10 to 40 deg. Good correlation has been found between predicted and experimental signal energy levels. In addition, AE generation from chip contact along the tool face is studied and the AE energy level reflects the existence of chip sticking and sliding on the tool face, and indicates the feasibility of utilizing AE in tool wear sensing.