Newton polyhedra and the degree of theL-function associated to an exponential sum
暂无分享,去创建一个
[1] S. Sperber. p-Adic hypergeometric functions and their cohomology , 1977 .
[2] P. Deligne. La conjecture de Weil. I , 1974 .
[3] Steven Sperber,et al. On the degree of the $L$-function associated with an exponential sum , 1988 .
[4] P. Deligne,et al. Groupes de monodromie en geometrie algebrique , 1972 .
[5] V. Danilov,et al. THE GEOMETRY OF TORIC VARIETIES , 1978 .
[6] Enrico Bombieri,et al. On exponential sums in finite fields, II , 1978 .
[7] Bernard Dwork,et al. On the zeta function of a hypersurface , 1962 .
[8] P. Deligne,et al. Applications de la formule des traces aux sommes trigonométrigues , 1977 .
[9] Bernard Dwork,et al. On the Zeta Function of a Hypersurface: III , 1964 .
[10] Jean-Pierre Serre,et al. Endomorphismes complètement continus des espaces de Banachp-adiques , 1962 .
[11] A. G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor , 1976 .
[12] Enrico Bombieri,et al. On Exponential Sums in Finite Fields , 1966 .