FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML

[1]  A. Gartel,et al.  FOXM1 contributes to treatment failure in acute myeloid leukemia , 2018, JCI insight.

[2]  R. Majeti,et al.  Biology and relevance of human acute myeloid leukemia stem cells. , 2017, Blood.

[3]  D. Pollyea,et al.  Therapeutic targeting of acute myeloid leukemia stem cells. , 2017, Blood.

[4]  A. Mandoli,et al.  MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia , 2017, Oncogene.

[5]  D. Hose,et al.  FOXM1 is a therapeutic target for high-risk multiple myeloma , 2016, Leukemia.

[6]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[7]  Yu Hou,et al.  Foxm1 is essential for quiescence and maintenance of hematopoietic stem cells , 2015, Nature Immunology.

[8]  Zhigang Lu,et al.  The ITIM-containing receptor LAIR1 is essential for acute myeloid leukemia development , 2015, Nature Cell Biology.

[9]  E. Passegué,et al.  Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia , 2015, Nature Communications.

[10]  Yu Hou,et al.  FHL2 regulates hematopoietic stem cell functions under stress conditions , 2014, Leukemia.

[11]  T. Somervaille,et al.  The variety of leukemic stem cells in myeloid malignancy , 2014, Oncogene.

[12]  R. Jaenisch,et al.  TET1 plays an essential oncogenic role in MLL-rearranged leukemia , 2013, Proceedings of the National Academy of Sciences.

[13]  W. Choi,et al.  The MLL recombinome of acute leukemias in 2013 , 2013, Leukemia.

[14]  John M. Ashton,et al.  BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. , 2013, Cell stem cell.

[15]  A. Mencalha,et al.  Forkhead Box M1 (FoxM1) Gene Is a New STAT3 Transcriptional Factor Target and Is Essential for Proliferation, Survival and DNA Repair of K562 Cell Line , 2012, PloS one.

[16]  W. Yung,et al.  FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. , 2011, Cancer cell.

[17]  S. Balasubramanian,et al.  The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. , 2011, Nature chemistry.

[18]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[19]  U. Testa Leukemia stem cells , 2011, Annals of Hematology.

[20]  T. Kalin,et al.  Multiple faces of FoxM1 transcription factor , 2011, Cell cycle.

[21]  C. So,et al.  β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. , 2010, Cancer cell.

[22]  Satoki Nakamura,et al.  The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. , 2010, Carcinogenesis.

[23]  M. Carroll,et al.  AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3 , 2010, Leukemia.

[24]  Wolfram Goessling,et al.  The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML , 2010, Science.

[25]  A. Gartel,et al.  Thiazole antibiotics against breast cancer , 2010, Cell cycle.

[26]  Satoshi Tanaka,et al.  Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML , 2010, Nature Biotechnology.

[27]  O. Ohara,et al.  Identification of Therapeutic Targets for Quiescent, Chemotherapy-Resistant Human Leukemia Stem Cells , 2010, Science Translational Medicine.

[28]  Bob Löwenberg,et al.  Review Articles (434 articles) , 2008 .

[29]  M. Frank,et al.  The therapeutic promise of the cancer stem cell concept. , 2010, The Journal of clinical investigation.

[30]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[31]  A. Gartel,et al.  Thiazole Antibiotics Target FoxM1 and Induce Apoptosis in Human Cancer Cells , 2009, PloS one.

[32]  J. Downing,et al.  Mouse models of human AML accurately predict chemotherapy response. , 2009, Genes & development.

[33]  Richard A Young,et al.  Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. , 2008, Genes & development.

[34]  S. Morrison,et al.  The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: a mechanistic difference between normal and cancer stem cells. , 2008, Blood cells, molecules & diseases.

[35]  A. Gartel,et al.  Novel anticancer compounds induce apoptosis in melanoma cells , 2008, Cell cycle.

[36]  Yi Zheng,et al.  Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. , 2008, Cancer cell.

[37]  Mark J. Murphy,et al.  Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. , 2008, Cell stem cell.

[38]  I. Wierstra,et al.  FOXM1, a typical proliferation-associated transcription factor , 2007, Biological chemistry.

[39]  Satoshi Tanaka,et al.  Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region , 2007, Nature Biotechnology.

[40]  Vladimir Petrovic,et al.  A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. , 2007, The Journal of clinical investigation.

[41]  M. Cleary,et al.  Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. , 2006, Cancer cell.

[42]  A. Gartel,et al.  Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. , 2006, Cancer research.

[43]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[44]  Ming Yan,et al.  A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis , 2006, Nature Medicine.

[45]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[46]  Vladimir Petrovic,et al.  Forkhead Box M1 Regulates the Transcriptional Network of Genes Essential for Mitotic Progression and Genes Encoding the SCF (Skp2-Cks1) Ubiquitin Ligase , 2005, Molecular and Cellular Biology.

[47]  M. Follettie,et al.  Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. , 2005, Cancer research.

[48]  J. Dick Acute Myeloid Leukemia Stem Cells , 2005, Annals of the New York Academy of Sciences.

[49]  A. Cheung,et al.  Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c , 2005, Journal of Cell Science.

[50]  R. Costa FoxM1 dances with mitosis , 2005, Nature Cell Biology.

[51]  R. Costa,et al.  New and unexpected: forkhead meets ARF. , 2005, Current opinion in genetics & development.

[52]  Hans Clevers,et al.  FoxM1 is required for execution of the mitotic programme and chromosome stability , 2005, Nature Cell Biology.

[53]  K. Kaestner,et al.  The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. , 2004, Developmental biology.

[54]  I. Weissman,et al.  JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells , 2004, Cell.

[55]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[56]  A. Datta,et al.  Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. , 2004, Genes & development.

[57]  H. Kiyokawa,et al.  The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Adami,et al.  Increased Hepatic Forkhead Box M1B (FoxM1B) Levels in Old-aged Mice Stimulated Liver Regeneration through Diminished p27Kip1 Protein Levels and Increased Cdc25B Expression* , 2002, The Journal of Biological Chemistry.

[59]  R. Costa,et al.  Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Pui,et al.  Biological and therapeutic aspects of infant leukemia. , 2000, Blood.

[61]  K. Kaestner,et al.  Unified nomenclature for the winged helix/forkhead transcription factors. , 2000, Genes & development.

[62]  M. Cleary,et al.  MLL rearrangements in haematological malignancies: lessons from clinical and biological studies , 1999, British journal of haematology.

[63]  H. Clevers,et al.  Uncoupling of S phase and mitosis in cardiomyocytes and hepatocytes lacking the winged-helix transcription factor Trident , 1998, Current Biology.

[64]  H. Clevers,et al.  The winged-helix transcription factor Trident is expressed in cycling cells. , 1997, Nucleic acids research.

[65]  S. Burley,et al.  Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 , 1993, Nature.

[66]  A. Gartel,et al.  Nuclear FOXM1 drives chemoresistance in AML , 2017, Leukemia.

[67]  Myriam Alcalay,et al.  Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells , 2009, Nature.

[68]  M. Krzywinski,et al.  New insights to the MLL recombinome of acute leukemias , 2009, Leukemia.

[69]  H. Macdonald,et al.  Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. , 2008, Blood.

[70]  H. Macdonald,et al.  Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis , 2008 .

[71]  Yan Zhou,et al.  Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. , 2003, Gene expression.