Photophysics of Metal Nanoparticles: Heat Dissipation and Coherent Excitation of Phonon Modes

Ultrafast laser excitation of metal nanoparticles can create temperature increases of many hundreds of Kelvin. The aim of this paper is to provide an overview of our recent experimental studies of heat dissipation and the coherent generation of acoustic phonon modes in the particles. Our results show that the rate of heat dissipation depends on the surface area of the particles, and that both impulsive lattice heating and hot-electron pressure contribute to phonon excitation. The measured periods also depend on the pump laser intensity: higher intensities yield slower periods. This softening of the coherently excited phonon modes is due to the temperature dependence of the elastic constants of the particles.

[1]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[2]  I. B. Martini,et al.  Observation of acoustic quantum beats in nanometer sized Au particles , 1998 .

[3]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[4]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[5]  J. Cohen,et al.  Melting of Pb nanocrystals , 1998 .

[6]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[7]  J. Zhang,et al.  Ultrafast electron dynamics at the liquid–metal interface: Femtosecond studies using surface plasmons in aqueous silver colloid , 1995 .

[8]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[9]  Norris,et al.  Time-resolved observation of electron-phonon relaxation in copper. , 1987, Physical Review Letters.

[10]  N. Del Fatti,et al.  Ultrafast optical nonlinear properties of metal nanoparticles , 2001 .

[11]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[12]  P. Kamat,et al.  Semiconductor—Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold‐Capped TiO2 (TiO2/Gold) Nanoparticles. , 2001 .

[13]  N. D. Fatti,et al.  Nonequilibrium Electron Interactions in Metal Films , 1998, 0709.0815.

[14]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[15]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[16]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[17]  G. Deutscher,et al.  Time-resolved electron microscopy studies of the structure of nanoparticles and their melting , 2001 .

[18]  J. Sader,et al.  Theory of Acoustic Breathing Modes of Core−Shell Nanoparticles , 2002 .

[19]  M. El-Sayed,et al.  Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy , 1997 .

[20]  A. Henglein,et al.  Radiolytic Control of the Size of Colloidal Gold Nanoparticles , 1998 .

[21]  C. Ah,et al.  Photofragmentation Dynamics of n-Dodecanethiol-Derivatized Silver Nanoparticles in Cyclohexane , 2000 .

[22]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[23]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[24]  G. Hartland,et al.  Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation , 1998 .

[25]  C. Voisin,et al.  Time-resolved investigation of the vibrational dynamics of metal nanoparticles , 2000 .

[26]  P. Kamat,et al.  Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles , 2001 .

[27]  G. Hartland,et al.  Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles , 1998 .

[28]  Berg,et al.  Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles , 2000, Physical review letters.

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  V. Gusev On the duration of acoustic pulses excited by subpicosecond laser action on metals , 1992 .

[31]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[32]  J. Zhang,et al.  Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface , 1997 .

[33]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[34]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[35]  Jean-Yves Bigot,et al.  Electron dynamics in metallic nanoparticles , 2000 .

[36]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[37]  A. Henglein,et al.  Laser-Induced Inter-Diffusion in AuAg Core−Shell Nanoparticles , 2000 .

[38]  J. Turkevich,et al.  Coagulation of Colloidal Gold , 2002 .

[39]  H. Maris,et al.  Electron diffusion in metals studied by picosecond ultrasonics. , 1994, Physical review. B, Condensed matter.

[40]  Ultrafast optical relaxation dynamics in metallic nanoparticles: from bulk-like toward spatial confinement regime , 2000 .

[41]  Prashant V. Kamat,et al.  Visible Laser Induced Fusion and Fragmentation of Thionicotinamide-Capped Gold Nanoparticles , 1999 .

[42]  A. Henglein,et al.  Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions , 1999 .

[43]  Seiichiro Koda,et al.  Size reduction of gold particles in aqueous solution by pulsed laser irradiation , 1998 .

[44]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[45]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[46]  Horace Lamb,et al.  On the Vibrations of an Elastic Sphere , 1881 .

[47]  A. Takami,et al.  Laser-Induced Size Reduction of Noble Metal Particles , 1999 .

[48]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.2: Infrared and Raman spectra of polyatomic molecules , 1945 .

[49]  Reginald Birngruber,et al.  On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins , 1999 .

[50]  C. Flytzanis,et al.  Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles , 2000 .

[51]  C. Flytzanis,et al.  Acoustic Vibration of Metal Films and Nanoparticles , 2000 .

[52]  Guglielmo Lanzani,et al.  COHERENT ACOUSTIC OSCILLATIONS IN METALLIC NANOPARTICLES GENERATED WITH FEMTOSECOND OPTICAL PULSES , 1997 .

[53]  M. El-Sayed,et al.  Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix , 2001 .

[54]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[55]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[56]  V. V. Vukovic,et al.  Surface modification of nanometer-scale silver particles by imidazole , 1993 .

[57]  G. Battaglin,et al.  Laser-irradiation effects during Z-scan measurement on metal nanocluster composite glasses , 2000 .

[58]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .