Results on Parity-Check Matrices With Optimal Stopping And/Or Dead-End Set Enumerators

The performance of iterative decoding techniques for linear block codes correcting erasures depends very much on the sizes of the stopping sets associated with the underlying Tanner graph, or, equivalently, the parity-check matrix representing the code. In this correspondence, we introduce the notion of dead-end sets to explicitly demonstrate this dependency. The choice of the parity-check matrix entails a tradeoff between performance and complexity. We give bounds on the complexity of iterative decoders achieving optimal performance in terms of the sizes of the underlying parity-check matrices. Further, we fully characterize codes for which the optimal stopping set enumerator equals the weight enumerator.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  A. Vardy,et al.  Stopping sets in codes from designs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[3]  Alexei Gorokhov,et al.  Signaling Over Arbitrarily Permuted Parallel Channels , 2008, IEEE Transactions on Information Theory.

[4]  Priti Shankar,et al.  Computing the Stopping Distance of a Tanner Graph Is NP-Hard , 2007, IEEE Transactions on Information Theory.

[5]  Joachim Rosenthal,et al.  Pseudocodeword weights and stopping sets , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  Andrew McGregor,et al.  On the Hardness of Approximating Stopping and Trapping Sets in LDPC Codes , 2007, 2007 IEEE Information Theory Workshop.

[7]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[8]  Paul H. Siegel,et al.  Improved Upper Bounds on Stopping Redundancy , 2005, IEEE Transactions on Information Theory.

[9]  Khaled A. S. Abdel-Ghaffar,et al.  Generalized Iterative Decoding for Linear Block Codes on the Binary Erasure Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[11]  J.H. Weber,et al.  On Decoding Failure Probabilities for Linear Block Codes on the Binary Erasure Channel , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[12]  Shu-Tao Xia,et al.  On the stopping distance of finite geometry LDPC codes , 2006, IEEE Commun. Lett..

[13]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[14]  A. Orlitsky,et al.  Stopping sets and the girth of Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[15]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[16]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[17]  Tuvi Etzion On the Stopping Redundancy of Reed-Muller Codes , 2006, IEEE Trans. Inf. Theory.

[18]  Ryoji Ikegaya,et al.  Paper Special Section on Information Theory and Its Applications Asymptotic Weight and Stopping Set Distributions for Detailedly Represented Irregular Ldpc Code Ensembles , 2022 .

[19]  Henk D. L. Hollmann,et al.  On Parity-Check Collections for Iterative Erasure Decoding That Correct all Correctable Erasure Patterns of a Given Size , 2007, IEEE Transactions on Information Theory.

[20]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2005, ISIT.

[21]  Khaled A. S. Abdel-Ghaffar,et al.  Stopping set analysis for Hamming codes , 2005, IEEE Information Theory Workshop, 2005..

[22]  Khaled A. S. Abdel-Ghaffar,et al.  Complete Enumeration of Stopping Sets of Full-Rank Parity-Check Matrices of Hamming Codes , 2007, IEEE Transactions on Information Theory.

[23]  A. Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[24]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[25]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[26]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.