Results on Parity-Check Matrices With Optimal Stopping And/Or Dead-End Set Enumerators
暂无分享,去创建一个
[1] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[2] A. Vardy,et al. Stopping sets in codes from designs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[3] Alexei Gorokhov,et al. Signaling Over Arbitrarily Permuted Parallel Channels , 2008, IEEE Transactions on Information Theory.
[4] Priti Shankar,et al. Computing the Stopping Distance of a Tanner Graph Is NP-Hard , 2007, IEEE Transactions on Information Theory.
[5] Joachim Rosenthal,et al. Pseudocodeword weights and stopping sets , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[6] Andrew McGregor,et al. On the Hardness of Approximating Stopping and Trapping Sets in LDPC Codes , 2007, 2007 IEEE Information Theory Workshop.
[7] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[8] Paul H. Siegel,et al. Improved Upper Bounds on Stopping Redundancy , 2005, IEEE Transactions on Information Theory.
[9] Khaled A. S. Abdel-Ghaffar,et al. Generalized Iterative Decoding for Linear Block Codes on the Binary Erasure Channel , 2007, 2007 IEEE International Symposium on Information Theory.
[10] David Burshtein,et al. Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.
[11] J.H. Weber,et al. On Decoding Failure Probabilities for Linear Block Codes on the Binary Erasure Channel , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.
[12] Shu-Tao Xia,et al. On the stopping distance of finite geometry LDPC codes , 2006, IEEE Commun. Lett..
[13] Alon Orlitsky,et al. Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.
[14] A. Orlitsky,et al. Stopping sets and the girth of Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.
[15] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[16] Emre Telatar,et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.
[17] Tuvi Etzion. On the Stopping Redundancy of Reed-Muller Codes , 2006, IEEE Trans. Inf. Theory.
[18] Ryoji Ikegaya,et al. Paper Special Section on Information Theory and Its Applications Asymptotic Weight and Stopping Set Distributions for Detailedly Represented Irregular Ldpc Code Ensembles , 2022 .
[19] Henk D. L. Hollmann,et al. On Parity-Check Collections for Iterative Erasure Decoding That Correct all Correctable Erasure Patterns of a Given Size , 2007, IEEE Transactions on Information Theory.
[20] Alexander Vardy,et al. On the stopping distance and the stopping redundancy of codes , 2005, ISIT.
[21] Khaled A. S. Abdel-Ghaffar,et al. Stopping set analysis for Hamming codes , 2005, IEEE Information Theory Workshop, 2005..
[22] Khaled A. S. Abdel-Ghaffar,et al. Complete Enumeration of Stopping Sets of Full-Rank Parity-Check Matrices of Hamming Codes , 2007, IEEE Transactions on Information Theory.
[23] A. Orlitsky,et al. Stopping set distribution of LDPC code ensembles , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[24] J.-M. Goethals,et al. IEEE international symposium on information theory , 1981 .
[25] Faramarz Fekri,et al. On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.
[26] Alexander Vardy,et al. On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.