Mechanical and corrosion properties of Ti-35Nb-7Zr- x HA composites fabricated by spark plasma sintering

[1]  Y. H. Li,et al.  Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory , 2015 .

[2]  S. Pityana,et al.  Microstructure, hardness and corrosion properties of laser processed Ti6Al4V-based composites , 2015 .

[3]  D. Yi,et al.  Corrosion behavior of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications in Ringer's solution , 2015 .

[4]  S. Sajjadi,et al.  Microstructural aspects of in-situ TiB reinforced Ti–6Al–4V composite processed by spark plasma sintering , 2015 .

[5]  G. Wen,et al.  Effect of alkali treatments on apatite formation of microarc-oxidized coating on titanium alloy surface , 2015 .

[6]  M. Mohammed,et al.  Effect of thermo-mechanical processing on microstructure and electrochemical behavior of Ti–Nb–Zr–V new metastable β titanium biomedical alloy , 2015 .

[7]  A. Tamayol,et al.  Characterization of Ti-HA composite fabricated by mechanical alloying , 2015 .

[8]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[9]  O. Florêncio,et al.  Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy , 2014 .

[10]  L. Murr,et al.  Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. , 2014, Acta biomaterialia.

[11]  Xiu Song,et al.  Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy , 2014 .

[12]  Jingshen Wu,et al.  High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering , 2013 .

[13]  Y. H. Li,et al.  Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering , 2013 .

[14]  Xuan Zhou,et al.  Electrochemical behavior of cold sprayed hydroxyapatite/titanium composite in Hanks’ solution , 2012 .

[15]  Yuyong Chen,et al.  Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering , 2012 .

[16]  Seungmin Lee,et al.  Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders , 2011 .

[17]  A. Bandyopadhyay,et al.  Electrically polarized HAp-coated Ti: in vitro bone cell-material interactions. , 2010, Acta biomaterialia.

[18]  R. Caram,et al.  Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys , 2009 .

[19]  Yu Zhou,et al.  Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. , 2008, Acta biomaterialia.

[20]  M. Usta,et al.  Hydroxyapatite and zirconia composites: Effect of MgO and MgF2 on the stability of phases and sinterability , 2008 .

[21]  Amauri Garcia,et al.  Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses , 2008 .

[22]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[23]  Y. Zhu,et al.  Abnormal strain hardening in nanostructured titanium at high strain rates and large strains , 2007 .

[24]  Yufeng Zheng,et al.  Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions , 2006 .

[25]  E. Eisenbarth,et al.  Biocompatibility of β-stabilizing elements of titanium alloys , 2004 .

[26]  Y. Dong,et al.  Fabrication and characterization of hydroxyapatite reinforced with 20 vol % Ti particles for use as hard tissue replacement , 2002, Journal of materials science. Materials in medicine.

[27]  S. Tor,et al.  Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. , 2002, Biomaterials.

[28]  S. Ramesh,et al.  Effects of Sintering Temperature on the Properties of Hydroxyapatite , 2000 .

[29]  W. Bonfield,et al.  Biodegradable drug delivery system for the treatment of bone infection and repair , 1999, Journal of materials science. Materials in medicine.

[30]  T. Chartier,et al.  Rheological characteristics of alumina platelet–Hydroxyapatite composite suspensions , 1999 .

[31]  T. Goto,et al.  Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3). , 1996, Journal of biomedical materials research.

[32]  J. Helsen,et al.  In vitro simulation of biocompatibility of Ti-Al-V. , 1988, Journal of biomedical materials research.