Simulation of Remotely Sensed Rainfall Fields Using Copulas

Rainfall is a major input in hydrological and meteorological models. Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrologic and meteorological modeling. Hydrological and climate studies have long relied on rain gauge measurements. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. Recent technological advances in the field of remote sensing have led to an increase in available rainfall data on a regional and global scale. However, the advantages of remotely sensed data are limited by complications related to the indirect nature of remotely sensed estimates. Previous studies confirm that remotely sensed rainfall estimates are subject to various errors, and for future use in hydrologic and climate studies, efforts are required to determine the accuracy of data and their associated uncertainties. Despite extensive research, however, uncertainties associated with remotely sensed rainfall estimates are not yet well quantified. Radar rainfall estimates, for example, are associated with several different error types that arise from various factors such as beam over-shooting, partial beam filling, non-uniformity in vertical profiles of reflectivity (VPR), inappropriate $Z-R$ relationship, spatial sampling pattern, hardware calibration and random sampling error. It is expected that uncertainties in rainfall input data will propagate into predictions from hydrologic and meteorologic models; therefore, accurate characterization and quantification of such errors in radar data and the induced uncertainties in hydrologic applications is an extremely important, yet challenging issue. So far, a multitude of approaches and extensive research efforts have been undertaken to develop an uncertainty model for remotely sensed rainfall estimates. In order to assess rainfall uncertainties, one can simulate an ensemble of precipitation fields that consists of a large number of realizations, each of which represents a possible rainfall event that can occur. Subsequent runs of a hydrological or meteorological model using simulated ensembles of rainfall estimates would then allow an assessment of uncertainty propagation due to the precipitation input. One way to generate an ensemble of rainfall estimates is to stochastically simulate random error fields and impose them on radar estimates. This study intends to develop different stochastic techniques for simulation of radar-based rainfall fields through simulating random error fields and imposing them over remotely sensed rainfall estimates. Four different models are developed and discussed in this work. In the first and second models, two elliptical copulas, Gaussian and t-copula, are used to describe the dependence structure of radar rainfall error and to simulate multivariate rainfall error fields. In the third model, an asymmetrical v-transformed copula is employed for error simulations. In the fourth model, rainfall fields are generated by perturbing rainfall estimates with two normally distributed error terms: a purely random component and a component proportional to the magnitude of the rainfall rates. In the first three models, having described the dependencies using copulas, the empirical distribution function of observed rainfall error is numerically approximated and applied to the simulated error fields so that the simulated realizations are similar to those of the observed in terms of the distribution function. In the fourth model, however, the error is assumed to be normally distributed. In all the models, available observations of radar rainfall error (the differences between radar estimates and rain gauge measurements) are used to condition the simulated fields on observations. In order to examine reliability and performance of the developed models, several case studies are presented over a small watershed in Mississippi, USA, and a large watershed in Oklahoma, USA. Both radar reflectivity data (Level II) as well as Stage IV Next Generation Weather Radar (NEXRAD) multi-sensor precipitation estimates are used as input to the models. The simulated rainfall fields obtained from different models are compared with original radar estimates with respect to statistical properties, extreme values and spatio-temporal dependencies. Moreover, a physically based model is used to demonstrate the application of the presented rainfall field generators in streamflow analysis. In subsequent chapters, after introducing the models, their strong and weak points are highlighted and discussed in detail. Durch die Entwicklung von Wetter-Radarsystem, Satelliten und Techniken der Fernerkundung sind in den letzten Jahren Niederschlagsinformationen in hoherer raumlicher wie zeitlicher Auflosung verfugbar geworden, als es Niederschlagsmesser liefern konnen. Dadurch haben Daten aus der Fernerkundung in den letzten Jahrzehnten verstarkt Einzug in hydrologische und meteorologische Vorhersagen gefunden. Verglichen mit Messwerten von Niederschlagsmessern bieten diese Daten eine hohere raumliche und zeitliche Auflosung. Allerdings bergen sie auch verschiedene Fehlerquellen wie den Effekt, dass der Strahl durch die Erdkrummung immer weiter uber das Gebiet hinaus schiest und er nur teilweise ausgefullt wird. Hinzu kommen Geratefehler und Unsicherheiten, Ungleichmasigkeiten im Hohenprofil der Reflektivitat (VPR - verticale profiles of reflectivity), unzulangliche Z-R-Beziehungen, raumliche Abtastmuster, Hardware-Kalibrierung und zufallige Abtastfehler. Daruber hinaus nimmt auch das Wettergeschehen Einfluss auf die Radar-Messwerte. Beispielhaft seien hier grose raumliche Ausbreitung von Niederschlagsereignissen in eine Richtung oder der thermodynamische Zustand der Niederschlagskorper, die die Radarschatzungen beeinflussen konnen, erwahnt. Die durch Fernerkundung erfassten Niederschlags-Daten sind bislang - trotz ausgiebiger Forschung - nicht gut quantifiziert worden. Eine Moglichkeit, diese raumlichen wie zeitlichen Unsicherheiten bezuglich des Niederschlagsverhaltens einzuschatzen, ist die Simulierung eines Ensembles an Niederschlagsfeldern. Diese bestehen aus einer grosen Anzahl an Realisationen, von denen jede ein moglicherweise eintretendes Niederschlagsereignis reprasentiert. Stochastisch generierter Niederschlag kann dann als Eingangsgrose fur hydrologische und meteorologische Modelle verwendet werden, um die Unsicherheiten der Modellvorhersagen abzuschatzen. Es sind grose Anstrengungen unternommen worden, stochastische Modelle zur Simulierung multivariater Regenfelder (Regenmesser, Radar, Satelliten, etc.) zu entwickeln. Eine Alternative, um ein Ensemble von Regenfeldern zu erhalten, ist es, Felder von Fehlern zu simulieren und damit die gemessenen Niederschlagsdaten zu uberlagern. Diese Arbeit soll der Untersuchung und Entwicklung verschiedener stochastischer Methoden zur Nachbildung radarbasierter Regenfelder auf Grundlage von Niederschlagsschatzungen aus der Fernerkundung, die mit simulierten Zufallsfehlerfeldern uberlagert werden, dienen. Vier unterschiedliche Ansatze werden in dieser Veroffentlichung entwickelt und besprochen. In den ersten beiden Modellen kommen zwei elliptische Copulas - Gaussian- und t-Copula - zur Beschreibung der Abhangigkeitsstrukturen von Radar-Niederschlagsfehlern und zur Simulierung multivariater Niederschlagsfehler-Felder zum Einsatz. Im dritten Modell wird eine asymmetrische v-transformierte Copula zur Fehlersimulation verwendet. Mit dieser konnen asymmetrisch Abhangigkeiten uber die Copulaparameter beschrieben werden. Im vierten Modell werden Regenfelder dadurch erzeugt, dass Niederschlagsschatzungen mit zwei normalverteilten Fehlertermen modifiziert werden: ein absolut unabhangiger Anteil und einer, der dem Ausmas des Niederschlags proportional ist. Bei den ersten drei Modellen, bei denen die Abhangigkeiten mit Copulas beschrieben wurden, wird die empirische Verteilungsfunktion der beobachteten Niederschlagsfehler numerisch approximiert und auf die simulierten Fehlerfelder angewendet, sodass die simulierten Realisierungen in Hinblick auf die Verteilungsfunktion den beobachteten ahneln. Im vierten Modell wird hingegen angenommen, dass die Fehler normalverteilt sind. Bei allen Modellen werden vorhandene Beobachtungen der Radarniederschlagsfehler (die Differenzen zwischen Radarschatzungen und Messwerten der Regenmesser) herangezogen, um die simulierten Felder auf die Beobachtungen zu konditionieren.

[1]  David G. Tarboton,et al.  A Nonparametric Wet/Dry Spell Model for Resampling Daily Precipitation , 1996 .

[2]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[3]  Minghao Qin Wirklichkeitsnahe und recheneffiziente Ermittlung von Temperatur und Spannungen bei großen RCC-Staumauern , 2005 .

[4]  S. Patil Regionalization of an event based Nash cascade model for flood predictions in ungauged basins , 2008 .

[5]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[6]  I. Kopecki Calculational approach to FST-hemispheres for multiparametrical Benthos Habitat modelling , 2008 .

[7]  Jing Li Application of copulas as a new geostatistical tool , 2010 .

[8]  R. Srikanthan,et al.  A space and time model for design storm rainfall , 1999 .

[9]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[10]  Brent M. Troutman,et al.  Runoff prediction errors and bias in parameter estimation induced by spatial variability of precipitation , 1983 .

[11]  Soroosh Sorooshian,et al.  On the simulation of infiltration‐ and saturation‐excess runoff using radar‐based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation , 1998 .

[12]  H. Schwarz Die Grenztragfähigkeit des Baugrundes bei Einwirkung vertikal gezogener Ankerplatten als zweidimensionales Bruchproblem , 1969 .

[13]  S. Wagner,et al.  Water balance in a poorly gauged basin in West Africa using atmospheric modelling and remote sensing information , 2008 .

[14]  Holger Class Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien , 2001 .

[15]  Chris Kilsby,et al.  A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change , 2005 .

[16]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[17]  James W. Wilson,et al.  Radar Measurement of Rainfall—A Summary , 1979 .

[18]  Surabhin C. Jose Experimental investigations on longitudinal dispersive mixing in heterogeneous aquifers , 2005 .

[19]  Carlton W. Ulbrich Relationships of Equivalent Reflectivity Factor to the Vertical Fluxes of Mass and Kinetic Energy of Hail. , 1978 .

[20]  D. Wilks Multisite generalization of a daily stochastic precipitation generation model , 1998 .

[21]  Witold F. Krajewski,et al.  Synthesis of radar rainfall data , 1985 .

[22]  T. K. Gurmessa Numerical investigation on flow and transport characteristics to improve long-term simulation of reservoir sedimentation , 2007 .

[23]  Maren Paul,et al.  Simulation of two-phase flow processes in heterogeneous porous media with adaptive methods , 2003 .

[24]  Ian Cluckie,et al.  Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction , 2006 .

[25]  A. Bárdossy,et al.  Geostatistical interpolation using copulas , 2008 .

[26]  Saqib Ehsan Evaluation of life safety risks related to severe flooding , 2009 .

[27]  K. ARBENZ Deterministische und stochastische optimale Steuerung / Deterministic and stochastic optimal control , 1976 .

[28]  Keith Beven,et al.  The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data , 1994 .

[29]  A. Papafotiou Numerical investigations of the role of hysteresis in heterogeneous two-phase flow systems , 2008 .

[30]  Oscar Pozos Estrada Investigation on the effects of entrained air in pipelines , 2007 .

[31]  S. Sorooshian,et al.  Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting , 2005 .

[32]  Robert F. Adler,et al.  Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA , 2009 .

[33]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[34]  Ayros Chumpitazi,et al.  Regionalisierung extremer Abflüsse auf der Grundlage statistischer Verfahren , 2000 .

[35]  Richard D. De Veaux,et al.  The temporal and spatial variability of rainfall power , 1992 .

[36]  D. Wilks,et al.  The weather generation game: a review of stochastic weather models , 1999 .

[37]  Michael F. Hutchinson,et al.  Stochastic space-time weather models from ground-based data , 1995 .

[38]  Louis J. Battan,et al.  Radar Observation of the Atmosphere , 1973 .

[39]  Jens Götzinger Distributed conceptual hydrological modelling - simulation of climate, land use change impact and uncertainty analysis , 2007 .

[40]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[41]  Wei Yang Discrete-continuous downscaling model for generating daily precipitation time series , 2008 .

[42]  M. Vasin Influence of the soil structure and property contrast on flow and transport in the unsaturated zone , 2010 .

[43]  Shaun Lovejoy,et al.  Fractals, Raindrops and Resolution Dependence of Rain Measurements , 1990 .

[44]  M. Süß Analysis of the influence of structures and boundaries on flow and transport processes in fractured porous media , 2005 .

[45]  Soroosh Sorooshian,et al.  Spatial characteristics of thunderstorm rainfall fields and their relation to runoff , 2003 .

[46]  A. Marx Einsatz gekoppelter Modelle und Wetterradar zur Abschätzung von Niederschlagsintensitäten und zur Abflussvorhersage , 2007 .

[47]  B. Schweizer,et al.  Thirty Years of Copulas , 1991 .

[48]  L. Samaniego-Eguiguren Hydrological consequences of land use/land cover and climatic changes in mesoscale catchments , 2003 .

[49]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[50]  G. Villarini,et al.  Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data , 2007 .

[51]  J. Braun,et al.  Ressource Untergrund - 10 Jahre VEGAS: Forschung und Technologieentwicklung zum Schutz von Grundwasser und Boden , 2005 .

[52]  Stefan Lang Parallele numerische Simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern , 2001 .

[53]  T. Dreher Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit wandnahen turbulenten Strömungsbedingungen , 2005 .

[54]  Aleksandar Trifkovic,et al.  Multi-objective and risk-based modelling methodology for planning, design and operation of water supply systems , 2007 .

[55]  Helmut Kobus,et al.  Versuchseinrichtung zur Grundwasser- und Altlastensanierung : Konzeption und Programmrahmen , 1993 .

[56]  Matthias Steiner,et al.  Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal of Nonprecipitating Echoes in Radar Data , 2002 .

[57]  Vlad Rojanschi Abflusskonzentration in mesoskaligen Einzugsgebieten unter Berücksichtigung des Sickerraumes , 2006 .

[58]  Matthias Steiner,et al.  Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on Raindrop Spectra , 2000 .

[59]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[60]  G. Hartmann Investigation of evapotranspiration concepts in hydrological modelling for climate change impact assessment , 2007 .

[61]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[62]  Siegfried Gurr Beitrag zur Berechnung zusammengesetzter ebener Flächentragwerke : unter besonderer Berücksichtigung ebener Stauwände, mit Hilfe von Randwert- und Lastwertmatrizen , 1964 .

[63]  S. Sorooshian,et al.  Measurement and analysis of small-scale convective storm rainfall variability , 1995 .

[64]  Phillip Jordan,et al.  A Stochastic Model of Radar Measurement Errors in Rainfall Accumulations at Catchment Scale , 2003 .

[65]  H. Joe Multivariate models and dependence concepts , 1998 .

[66]  S. Ochs Steam injection into saturated porous media : process analysis including experimental and numerical investigations , 2007 .

[67]  M. Fischer Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknung bindiger Böden , 2006 .

[68]  Annette Silberhorn-Hemminger Modellierung von Kluftaquifersystemen: Geostatistische Analyse und deterministisch-stochastische Kluftgenerierung , 2002 .

[69]  R. Wege Untersuchungs- und Überwachungsmethoden für die Beurteilung natürlicher Selbstreinigungsprozesse im Grundwasser , 2005 .

[70]  A. Kopp Evaluation of CO2 injection processes in geological formations for site screening , 2009 .

[71]  Johann Riedl,et al.  Systematic variations of Z–R-relationships from drop size distributions measured in northern Germany during seven years , 1998 .

[72]  祝从文,et al.  Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field , 2008 .

[73]  Bruno Rémillard,et al.  Nonparametric weighted symmetry tests , 2003 .

[74]  Jennifer Niessner,et al.  Multi-scale modeling of multi-phase-multi-component processes in heterogeneous porous media , 2006 .

[75]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[76]  Jens Mödinger Entwicklung eines Bewertungs- und Entscheidungsunterstützungssystems für eine nachhaltige regionale Grundwasserbewirtschaftung , 2006 .

[77]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[78]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[79]  Yi He,et al.  Application of a non-parametric classification scheme to catchment hydrology , 2008 .

[80]  V. Bell,et al.  The sensitivity of catchment runoff models to rainfall data at different spatial scales , 2000 .

[81]  Kenichiro Kobayashi,et al.  Optimization methods for multiphase systems in the subsurface : application to methane migration in coal mining areas , 2005 .

[82]  Kunio Shimizu,et al.  A Bivariate Mixed Lognormal Distribution with an Analysis of Rainfall Data , 1993 .

[83]  Lucy Bastin,et al.  Visualizing uncertainty in multi-spectral remotely sensed imagery , 2002 .

[84]  José G. Ramcrez Data Analysis: Statistical and Computational Methods for Scientists and Engineers , 2000, Technometrics.

[85]  S. Prohaska Development and application of a 1D multi-strip fine sediment transport model for regulated rivers , 2009 .

[86]  Sabine Manthey Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation , 2006 .

[87]  Frank S. Marzano,et al.  Maximum-Likelihood Retrieval of Modeled Convective Rainfall Patterns from Midlatitude C-Band Weather Radar Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[88]  A. Favre,et al.  Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data , 2007 .

[89]  Witold F. Krajewski,et al.  Evaluating NEXRAD Multisensor Precipitation Estimates for Operational Hydrologic Forecasting , 2000 .

[90]  A. Petersen-Øverleir,et al.  Accounting for heteroscedasticity in rating curve estimates , 2004 .

[91]  Doerthe Tetzlaff,et al.  Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data , 2005 .

[92]  Witold F. Krajewski,et al.  Product‐error‐driven generator of probable rainfall conditioned on WSR‐88D precipitation estimates , 2009 .

[93]  Sandra Freiboth A phenomenological model for the numerical simulation of multiphase multicomponent processes considering structural alterations of porous media , 2009 .

[94]  Timothy D. Crum,et al.  The WSR-88D and the WSR-88D Operational Support Facility , 1993 .

[95]  Balaji Rajagopalan,et al.  A resampling procedure for generating conditioned daily weather sequences , 2004 .

[96]  Katrin Batereau SENSORBASIERTE BODENLUFTMESSUNG ZUR VOR-ORT-ERKUNDUNG VON SCHADENSHERDEN IM UNTERGRUND , 2008 .

[97]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[98]  T. Das The impact of spatial variability of precipitation on the predictive uncertainty of hydrological models , 2006 .

[99]  F. Alabert,et al.  Non-Gaussian data expansion in the Earth Sciences , 1989 .

[100]  Jürgen Brommundt,et al.  Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen , 2008 .

[101]  Thomas Breiting Techniken und Methoden der Hydroinformatik : Modellierung von komplexen Hydrosystemen im Untergrund , 2006 .

[102]  Alexander Schneck Optimierung der Grundwasserbewirtschaftung unter Berücksichtigung der Belange der Wasserversorgung, der Landwirtschaft und des Naturschutzes , 2006 .

[103]  Ian Cluckie,et al.  A high‐resolution radar experiment on the island of Jersey , 2007 .

[104]  Witold F. Krajewski,et al.  Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches , 2008 .

[105]  P. Laux Statistical modeling of precipitation for agricultural planning in the Volta Basin of West Africa , 2009 .

[106]  George Jacoub Development of a 2-D Numerical Module for Particulate Contaminant Transport in Flood Retention Reservoirs and Impounded Rivers , 2004 .

[107]  Vijay P. Singh,et al.  Bivariate rainfall frequency distributions using Archimedean copulas , 2007 .

[108]  Frank Zöllner,et al.  Implementierung und Anwendung netzfreier Methoden im Konstruktiven Wasserbau und in der Hydromechanik , 2009 .

[109]  Eugene A. Mueller,et al.  Survey of Relationships Between Rainfall Rate and Radar Reflectivity in the Measurement of Precipitation , 1968 .

[110]  Michele Crosetto,et al.  Uncertainty propagation in models driven by remotely sensed data , 2001 .

[111]  M. Kitchen,et al.  Representativeness errors in comparisons between radar and gauge measurements of rainfall , 1992 .

[112]  Uwe Hiester Technologieentwicklung zur In-situ-Sanierung der ungesättigten Bodenzone mit festen Wärmequellen , 2009 .

[113]  Omar Khalil Ouda Optimisation of Agricultural Water Use: A Decision Support System for the Gaza Strip Von der Fakultät Bau-und Umweltingenieurwissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktor- Ingenieurs (Dr.-Ing) genehmigte Abhandlung , 2003 .

[114]  F. Filiz Linking large scale meteorological conditions to floods in mesoscale catchments , 2005 .

[115]  Beau J. Freeman Modernization criteria assessment for water resources planning; Klamath Irrigation Project, U.S. , 2008 .

[116]  W. Nowak Geostatistical methods for the identification of flow and transport parameters in the subsurface , 2005 .

[117]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[118]  Ignacio Rodriguez-Iturbe,et al.  Rainfall generation: A nonstationary time‐varying multidimensional model , 1976 .

[119]  Vijay P. Singh,et al.  CASC2D: a two-dimensional, physically-based, Hortonian hydrologic model. , 2002 .

[120]  Hussam Sheta Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten , 1999 .

[121]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[122]  W. Krajewski,et al.  On the estimation of radar rainfall error variance , 1999 .

[123]  Sanjeev S. Tambe,et al.  Prediction of all India summer monsoon rainfall using error-back-propagation neural networks , 1997 .

[124]  R. Srikanthan,et al.  A comparison of three stochastic multi-site precipitation occurrence generators , 2006 .

[125]  John N. Haddad,et al.  Modeling annual rainfall: a robust maximum likelihood approach , 2007 .

[126]  F. Hossain,et al.  Investigating Error Metrics for Satellite Rainfall Data at Hydrologically Relevant Scales , 2008 .

[127]  K. Stephan Integration elliptischer funktionen , 1988 .

[128]  J. Monteith Evaporation and surface temperature , 2007 .

[129]  Jens Wolf Räumlich differenzierte Modellierung der Grundwasserströmung alluvialer Aquifere für mesoskalige Einzugsgebiete , 2006 .

[130]  Bernd Huwe Deterministische und stochastische Ansätze zur Modellierung des Stickstoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau , 1992 .

[131]  Faisal Hossain,et al.  Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture , 2005 .