Microbiology of synthesis gas fermentation for biofuel production.
暂无分享,去创建一个
A. Stams | A. Henstra | J. Sipma | A. Rinzema | Alfons J M Stams | Anne M Henstra | Jan Sipma | Arjen Rinzema
[1] A. Stams,et al. Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. , 2005, International journal of systematic and evolutionary microbiology.
[2] W. Whitman,et al. Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. , 2006, Extremophiles.
[3] F. Robb,et al. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. , 2004, International journal of systematic and evolutionary microbiology.
[4] M. Rother,et al. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[5] Rathin Datta,et al. Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum , 1991 .
[6] J. Zeikus,et al. Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum , 1999, Applied Microbiology and Biotechnology.
[7] E. Bonch‐Osmolovskaya,et al. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction , 2006, Extremophiles.
[8] J. R. Kim,et al. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19 , 2002 .
[9] O. Meyer,et al. Two Membrane-Associated NiFeS-Carbon Monoxide Dehydrogenases from the Anaerobic Carbon-Monoxide-Utilizing EubacteriumCarboxydothermus hydrogenoformans , 2001, Journal of bacteriology.
[10] C. Williamson. The energy sector: a hidden goliath. , 2006 .
[11] R. Kerby,et al. Carbon monoxide-dependent growth of Rhodospirillum rubrum , 1995, Journal of bacteriology.
[12] A. Stams,et al. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans , 2005, Applied Microbiology and Biotechnology.
[13] R. Tanner,et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. , 2005, International journal of systematic and evolutionary microbiology.
[14] S. Singer,et al. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. , 2006, Biochimica et biophysica acta.
[15] Ayhan Demirbas,et al. Progress and recent trends in biofuels , 2007 .
[16] A. Stams,et al. Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. , 2007, Environmental microbiology.
[17] R. Tanner,et al. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.
[18] J. Zeikus,et al. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum , 1982, Journal of bacteriology.
[19] R. Fleischmann,et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.
[20] R. L. Uffen. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[21] P. Maness,et al. Energy Generation from the CO Oxidation-Hydrogen Production Pathway in Rubrivivax gelatinosus , 2005, Applied and Environmental Microbiology.
[22] F. Kapteijn,et al. Biofilm growth pattern in honeycomb monolith packings: Effect of shear rate and substrate transport limitations , 2005 .
[23] E. C. Clausen,et al. Biological conversion of synthesis gas into fuels , 1992 .
[24] H. Holms,et al. Flux analysis and control of the central metabolic pathways in Escherichia coli. , 1996, FEMS microbiology reviews.
[25] E. Bonch‐Osmolovskaya,et al. Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. , 2006, International journal of systematic and evolutionary microbiology.
[26] Ji-Young Park,et al. A new chemoheterotrophic bacterium catalyzing water-gas shift reaction , 1999, Biotechnology Letters.
[27] E. Bonch‐Osmolovskaya,et al. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. , 2005, International journal of systematic and evolutionary microbiology.
[28] B. Rittmann,et al. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.
[29] M. P. Bryant,et al. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii , 1987, Applied and environmental microbiology.
[30] M. P. Bryant,et al. Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids and Produces Butyrate , 1985 .
[31] B. Steele,et al. Materials for fuel-cell technologies , 2001, Nature.
[32] Jian Wang,et al. A complete sequence of the T. tengcongensis genome. , 2002, Genome research.
[33] H. Drake,et al. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui , 1990, Journal of bacteriology.
[34] Henry Naveau,et al. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide , 1994, Archives of Microbiology.
[35] M. P. Bryant,et al. Growth of Eubacterium limosum with Carbon Monoxide as the Energy Source , 1982, Applied and environmental microbiology.
[36] J. Zeikus,et al. Growth ofClostridium thermoaceticum on H2/CO2 or CO as energy source , 2005, Current Microbiology.
[37] E. Stackebrandt,et al. The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent , 2004, Extremophiles.
[38] B. Rittmann,et al. Hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) for removing oxidized contaminants , 2004 .
[39] R. Huber,et al. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[40] F. Robb,et al. Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. , 2001, International journal of systematic and evolutionary microbiology.
[41] J. R. Kim,et al. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2 , 1999, Biotechnology Letters.
[42] M. P. Bryant,et al. Peptostreptococcus productus strain that grows rapidly with CO as the energy source , 1984, Applied and environmental microbiology.
[43] Thomas D. Brock,et al. Biology of microorganisms , 1970 .
[44] G. Bennett,et al. Enhancement of lactate and succinate formation in adhE or pta‐ackA mutants of NADH dehydrogenase‐deficient Escherichia coli , 2005, Journal of applied microbiology.
[45] S. Ragsdale. Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.
[46] R. Hedderich. Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.
[47] Luke E. Ulrich,et al. Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 , 2005, PLoS genetics.
[48] R. L. Uffen,et al. NOTES: Identification of a Carbon Monoxide-Metabolizing Bacterium as a Strain of Rhodopseudomonas gelatinosa (Molisch) van Niel† , 1979 .
[49] R. Worden,et al. Reactor Design Issues for Synthesis‐Gas Fermentations , 1999, Biotechnology progress.
[50] A. Corma,et al. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.
[51] L. Daniels,et al. Carbon Monoxide Oxidation by Methanogenic Bacteria , 1977, Journal of bacteriology.
[52] J. Zeikus,et al. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide , 1984, Journal of bacteriology.
[53] Johannes M.N. van Kasteren. Co-gasification of wood and polyethylene with the aim of CO and H 2 production , 2006 .
[54] J. W. Gosselink. Pathways to a more sustainable production of energy: sustainable hydrogen—a research objective for Shell , 2002 .
[55] D. Newsome. The Water-Gas Shift Reaction , 1980 .
[56] M. Savage,et al. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum , 1987, Applied and environmental microbiology.
[57] J. C. F. Walker,et al. Primary Wood Processing , 1993, Springer Netherlands.
[58] Charlotte K. Williams,et al. The Path Forward for Biofuels and Biomaterials , 2006, Science.
[59] E. Bonch‐Osmolovskaya,et al. Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. , 2002, International journal of systematic and evolutionary microbiology.