Microbiology of synthesis gas fermentation for biofuel production.

A significant portion of biomass sources like straw and wood is poorly degradable and cannot be converted to biofuels by microorganisms. The gasification of this waste material to produce synthesis gas (or syngas) could offer a solution to this problem, as microorganisms that convert CO and H2) (the essential components of syngas) to multicarbon compounds are available. These are predominantly mesophilic microorganisms that produce short-chain fatty acids and alcohols from CO and H2. Additionally, hydrogen can be produced by carboxydotrophic hydrogenogenic bacteria that convert CO and H2O to H2 and CO2. The production of ethanol through syngas fermentation is already available as a commercial process. The use of thermophilic microorganisms for these processes could offer some advantages; however, to date, few thermophiles are known that grow well on syngas and produce organic compounds. The identification of new isolates that would broaden the product range of syngas fermentations is desirable. Metabolic engineering could be employed to broaden the variety of available products, although genetic tools for such engineering are currently unavailable. Nevertheless, syngas fermenting microorganisms possess advantageous characteristics for biofuel production and hold potential for future engineering efforts.

[1]  A. Stams,et al.  Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. , 2005, International journal of systematic and evolutionary microbiology.

[2]  W. Whitman,et al.  Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. , 2006, Extremophiles.

[3]  F. Robb,et al.  Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. , 2004, International journal of systematic and evolutionary microbiology.

[4]  M. Rother,et al.  Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Rathin Datta,et al.  Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum , 1991 .

[6]  J. Zeikus,et al.  Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum , 1999, Applied Microbiology and Biotechnology.

[7]  E. Bonch‐Osmolovskaya,et al.  Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction , 2006, Extremophiles.

[8]  J. R. Kim,et al.  Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19 , 2002 .

[9]  O. Meyer,et al.  Two Membrane-Associated NiFeS-Carbon Monoxide Dehydrogenases from the Anaerobic Carbon-Monoxide-Utilizing EubacteriumCarboxydothermus hydrogenoformans , 2001, Journal of bacteriology.

[10]  C. Williamson The energy sector: a hidden goliath. , 2006 .

[11]  R. Kerby,et al.  Carbon monoxide-dependent growth of Rhodospirillum rubrum , 1995, Journal of bacteriology.

[12]  A. Stams,et al.  Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans , 2005, Applied Microbiology and Biotechnology.

[13]  R. Tanner,et al.  Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. , 2005, International journal of systematic and evolutionary microbiology.

[14]  S. Singer,et al.  CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. , 2006, Biochimica et biophysica acta.

[15]  Ayhan Demirbas,et al.  Progress and recent trends in biofuels , 2007 .

[16]  A. Stams,et al.  Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. , 2007, Environmental microbiology.

[17]  R. Tanner,et al.  Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. , 1993, International journal of systematic bacteriology.

[18]  J. Zeikus,et al.  Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum , 1982, Journal of bacteriology.

[19]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[20]  R. L. Uffen Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Maness,et al.  Energy Generation from the CO Oxidation-Hydrogen Production Pathway in Rubrivivax gelatinosus , 2005, Applied and Environmental Microbiology.

[22]  F. Kapteijn,et al.  Biofilm growth pattern in honeycomb monolith packings: Effect of shear rate and substrate transport limitations , 2005 .

[23]  E. C. Clausen,et al.  Biological conversion of synthesis gas into fuels , 1992 .

[24]  H. Holms,et al.  Flux analysis and control of the central metabolic pathways in Escherichia coli. , 1996, FEMS microbiology reviews.

[25]  E. Bonch‐Osmolovskaya,et al.  Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. , 2006, International journal of systematic and evolutionary microbiology.

[26]  Ji-Young Park,et al.  A new chemoheterotrophic bacterium catalyzing water-gas shift reaction , 1999, Biotechnology Letters.

[27]  E. Bonch‐Osmolovskaya,et al.  Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. , 2005, International journal of systematic and evolutionary microbiology.

[28]  B. Rittmann,et al.  Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[29]  M. P. Bryant,et al.  Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii , 1987, Applied and environmental microbiology.

[30]  M. P. Bryant,et al.  Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids and Produces Butyrate , 1985 .

[31]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[32]  Jian Wang,et al.  A complete sequence of the T. tengcongensis genome. , 2002, Genome research.

[33]  H. Drake,et al.  Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui , 1990, Journal of bacteriology.

[34]  Henry Naveau,et al.  Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide , 1994, Archives of Microbiology.

[35]  M. P. Bryant,et al.  Growth of Eubacterium limosum with Carbon Monoxide as the Energy Source , 1982, Applied and environmental microbiology.

[36]  J. Zeikus,et al.  Growth ofClostridium thermoaceticum on H2/CO2 or CO as energy source , 2005, Current Microbiology.

[37]  E. Stackebrandt,et al.  The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent , 2004, Extremophiles.

[38]  B. Rittmann,et al.  Hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) for removing oxidized contaminants , 2004 .

[39]  R. Huber,et al.  A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  F. Robb,et al.  Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. , 2001, International journal of systematic and evolutionary microbiology.

[41]  J. R. Kim,et al.  Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2 , 1999, Biotechnology Letters.

[42]  M. P. Bryant,et al.  Peptostreptococcus productus strain that grows rapidly with CO as the energy source , 1984, Applied and environmental microbiology.

[43]  Thomas D. Brock,et al.  Biology of microorganisms , 1970 .

[44]  G. Bennett,et al.  Enhancement of lactate and succinate formation in adhE or pta‐ackA mutants of NADH dehydrogenase‐deficient Escherichia coli , 2005, Journal of applied microbiology.

[45]  S. Ragsdale Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.

[46]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[47]  Luke E. Ulrich,et al.  Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 , 2005, PLoS genetics.

[48]  R. L. Uffen,et al.  NOTES: Identification of a Carbon Monoxide-Metabolizing Bacterium as a Strain of Rhodopseudomonas gelatinosa (Molisch) van Niel† , 1979 .

[49]  R. Worden,et al.  Reactor Design Issues for Synthesis‐Gas Fermentations , 1999, Biotechnology progress.

[50]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[51]  L. Daniels,et al.  Carbon Monoxide Oxidation by Methanogenic Bacteria , 1977, Journal of bacteriology.

[52]  J. Zeikus,et al.  Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide , 1984, Journal of bacteriology.

[53]  Johannes M.N. van Kasteren Co-gasification of wood and polyethylene with the aim of CO and H 2 production , 2006 .

[54]  J. W. Gosselink Pathways to a more sustainable production of energy: sustainable hydrogen—a research objective for Shell , 2002 .

[55]  D. Newsome The Water-Gas Shift Reaction , 1980 .

[56]  M. Savage,et al.  Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum , 1987, Applied and environmental microbiology.

[57]  J. C. F. Walker,et al.  Primary Wood Processing , 1993, Springer Netherlands.

[58]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[59]  E. Bonch‐Osmolovskaya,et al.  Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. , 2002, International journal of systematic and evolutionary microbiology.