Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays

An electrically controllable terahertz (THz) plasmonic crystal waveguide based on double-structured Schottky grating arrays has been fabricated and investigated. The experiment and simulation show two different resonance behaviors of a discrete jump and a continuous shift when applying positive and negative bias, respectively. THz modulations with a 15 dB modulation depth have been realized in the frequency range of 2.2−3.2 THz. Furthermore, these modulation behaviors have been interpreted as the generation and shift of the plasmonic band structures accompanying with the spatial modulations of the Schottky barriers in this device. This active THz device can be feasibly applied into THz application systems.

[1]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[2]  Sanjay Krishna,et al.  Four‐Color Metamaterial Absorber THz Spatial Light Modulator , 2013 .

[3]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[4]  Sun-Goo Lee,et al.  Photonic band anti-crossing in a coupled system of a teraherz plasmonic crystal film and a metal air-gap waveguide , 2011 .

[5]  T. Ebbesen,et al.  Plasmonic crystal enhanced refractive index sensing , 2014 .

[6]  John L. Reno,et al.  Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals , 2013, Nature Photonics.

[7]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[8]  Shengjiang Chang,et al.  Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array , 2013 .

[9]  E. Lee,et al.  Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides , 2010 .

[10]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[11]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[12]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[13]  Xiaodong Wang,et al.  The plasmonic resonant absorption in GaN double-channel high electron mobility transistors , 2011 .

[14]  J. Baumberg,et al.  Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. , 2005, Physical review letters.

[15]  Debdeep Jena,et al.  Unique prospects for graphene-based terahertz modulators , 2011 .

[16]  Thomas E Murphy,et al.  Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. , 2013, Optics express.

[17]  B. Fischer,et al.  Optically gated tunable terahertz filters , 2012 .

[18]  W. Li,et al.  Cross-shaped metal–semiconductor–metal plasmonic crystal for terahertz modulator , 2013 .

[19]  Yujie J. Ding,et al.  Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. , 2008, Physical review letters.

[20]  Hui Zhang,et al.  Liquid-crystal-filled photonic crystal for terahertz switch and filter , 2009 .

[21]  Martin Koch,et al.  Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators , 2009 .

[22]  E. Hu,et al.  Two-dimensional hybrid photonic/plasmonic crystal cavities. , 2014, Optics express.