On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows
暂无分享,去创建一个
[1] H. Fédérer. Geometric Measure Theory , 1969 .
[2] H. D. Ratliff,et al. Minimum cuts and related problems , 1975, Networks.
[3] Dennis G. Severance,et al. Mathematical Techniques for Efficient Record Segmentation in Large Shared Databases , 1976, JACM.
[4] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[5] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[6] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[7] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[8] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[9] William H. Cunningham. On submodular function minimization , 1985, Comb..
[10] Andrew V. Goldberg,et al. A new approach to the maximum flow problem , 1986, STOC '86.
[11] A. Goldberg,et al. A new approach to the maximum-flow problem , 1988, JACM.
[12] Robert E. Tarjan,et al. A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..
[13] D. Greig,et al. Exact Maximum A Posteriori Estimation for Binary Images , 1989 .
[14] Laurent D. Cohen,et al. On active contour models and balloons , 1991, CVGIP Image Underst..
[15] E. Rouy,et al. A viscosity solutions approach to shape-from-shading , 1992 .
[16] Ravindra K. Ahuja,et al. Network Flows: Theory, Algorithms, and Applications , 1993 .
[17] F. Almgren,et al. Curvature-driven flows: a variational approach , 1993 .
[18] R. Almgren. Variational algorithms and pattern formation in dendritic solidification , 1993 .
[19] J. Tsitsiklis,et al. Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[20] S. Luckhaus,et al. Implicit time discretization for the mean curvature flow equation , 1995 .
[21] S. Thomas McCormick,et al. Fast algorithms for parametric scheduling come from extensions to parametric maximum flow , 1996, STOC '96.
[22] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[23] G. Bellettini,et al. Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .
[24] Kazuo Murota,et al. Discrete convex analysis , 1998, Math. Program..
[25] S. Thomas McCormick. Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow , 1999, Oper. Res..
[26] J. A. Sethian,et al. Fast Marching Methods , 1999, SIAM Rev..
[27] M. Novaga,et al. Facet-breaking for three-dimensional crystals evolving by mean curvature , 1999 .
[28] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[29] Maurizio Paolini,et al. Numerical simulation of crystalline curvature flow in 3D by interface diffusion , 2000 .
[30] Satoru Iwata,et al. A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.
[31] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[32] Satoru Iwata,et al. A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.
[33] Olga Veksler,et al. Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[34] Dorit S. Hochbaum,et al. An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.
[35] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[36] Vladimir Kolmogorov,et al. Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[37] K. Murota. Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .
[38] Vladimir Kolmogorov,et al. What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[39] Vladimir Kolmogorov,et al. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[40] A. Chambolle. An algorithm for Mean Curvature Motion , 2004 .
[41] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[42] Jon Lee. A First Course in Combinatorial Optimization: Branch-&-Bound , 2004 .
[43] Dorit S. Hochbaum,et al. Complexity and algorithms for convex network optimization and other nonlinear problems , 2005, 4OR.
[44] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[45] P. Kohli,et al. Efficiently solving dynamic Markov random fields using graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[46] Antonin Chambolle,et al. Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.
[47] J. Darbon. Total variation minimization with L/sup 1/ data fidelity as a contrast invariant filter , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..
[48] Daniel Freedman,et al. Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[49] A. Chambolle,et al. A characterization of convex calibrable sets in , 2005 .
[50] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[51] A. Chambolle,et al. Anisotropic curvature-driven ow of convex sets , 2004 .
[52] Daniel Cremers,et al. An Integral Solution to Surface Evolution PDEs Via Geo-cuts , 2006, ECCV.
[53] A. Leonardis,et al. Computer vision -- ECCV 2006 : 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006 : proceedings , 2006 .
[54] Jérôme Darbon,et al. Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.
[55] Olivier Juan,et al. Active Graph Cuts , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[56] A. Chambolle,et al. Crystalline Mean Curvature Flow of Convex Sets , 2006 .
[57] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[58] Andrew V. Goldberg,et al. Experimental Evaluation of Parametric Max-Flow Algorithms , 2007, WEA.
[59] A. Chambolle,et al. Approximation of the anisotropic mean curvature flow , 2007 .
[60] William K. Allard,et al. Total Variation Regularization for Image Denoising, I. Geometric Theory , 2007, SIAM J. Math. Anal..
[61] Vladimir Kolmogorov,et al. Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[62] Antonin Chambolle,et al. The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..
[63] M. Goemans. Network Ows , 2007 .
[64] A. Chambolle,et al. A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .
[65] A. Chambolle,et al. Implicit time discretization of the mean curvature flow with a discontinuous forcing term , 2008 .
[66] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[67] Wotao Yin,et al. Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..
[68] William K. Allard. Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..
[69] Ravindra K. Ahuja,et al. Network Flows , 2011 .