On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows

In a recent paper Boykov et al. (LNCS, Vol. 3953, pp. 409–422, 2006) propose an approach for computing curve and surface evolution using a variational approach and the geo-cuts method of Boykov and Kolmogorov (International conference on computer vision, pp. 26–33, 2003). We recall in this paper how this is related to well-known approaches for mean curvature motion, introduced by Almgren et al. (SIAM Journal on Control and Optimization 31(2):387–438, 1993) and Luckhaus and Sturzenhecker (Calculus of Variations and Partial Differential Equations 3(2):253–271, 1995), and show how the corresponding problems can be solved with sub-pixel accuracy using Parametric Maximum Flow techniques. This provides interesting algorithms for computing crystalline curvature motion, possibly with a forcing term.

[1]  H. Fédérer Geometric Measure Theory , 1969 .

[2]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[3]  Dennis G. Severance,et al.  Mathematical Techniques for Efficient Record Segmentation in Large Shared Databases , 1976, JACM.

[4]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[5]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[6]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[7]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  William H. Cunningham On submodular function minimization , 1985, Comb..

[10]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[11]  A. Goldberg,et al.  A new approach to the maximum-flow problem , 1988, JACM.

[12]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[13]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[14]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[15]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[16]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[17]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[18]  R. Almgren Variational algorithms and pattern formation in dendritic solidification , 1993 .

[19]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[20]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[21]  S. Thomas McCormick,et al.  Fast algorithms for parametric scheduling come from extensions to parametric maximum flow , 1996, STOC '96.

[22]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[23]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[24]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[25]  S. Thomas McCormick Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow , 1999, Oper. Res..

[26]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[27]  M. Novaga,et al.  Facet-breaking for three-dimensional crystals evolving by mean curvature , 1999 .

[28]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[29]  Maurizio Paolini,et al.  Numerical simulation of crystalline curvature flow in 3D by interface diffusion , 2000 .

[30]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[31]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[32]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[33]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[35]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[36]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  K. Murota Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .

[38]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  A. Chambolle An algorithm for Mean Curvature Motion , 2004 .

[41]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[42]  Jon Lee A First Course in Combinatorial Optimization: Branch-&-Bound , 2004 .

[43]  Dorit S. Hochbaum,et al.  Complexity and algorithms for convex network optimization and other nonlinear problems , 2005, 4OR.

[44]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[45]  P. Kohli,et al.  Efficiently solving dynamic Markov random fields using graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[46]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[47]  J. Darbon Total variation minimization with L/sup 1/ data fidelity as a contrast invariant filter , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[48]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[49]  A. Chambolle,et al.  A characterization of convex calibrable sets in , 2005 .

[50]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[51]  A. Chambolle,et al.  Anisotropic curvature-driven ow of convex sets , 2004 .

[52]  Daniel Cremers,et al.  An Integral Solution to Surface Evolution PDEs Via Geo-cuts , 2006, ECCV.

[53]  A. Leonardis,et al.  Computer vision -- ECCV 2006 : 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006 : proceedings , 2006 .

[54]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[55]  Olivier Juan,et al.  Active Graph Cuts , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[56]  A. Chambolle,et al.  Crystalline Mean Curvature Flow of Convex Sets , 2006 .

[57]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[58]  Andrew V. Goldberg,et al.  Experimental Evaluation of Parametric Max-Flow Algorithms , 2007, WEA.

[59]  A. Chambolle,et al.  Approximation of the anisotropic mean curvature flow , 2007 .

[60]  William K. Allard,et al.  Total Variation Regularization for Image Denoising, I. Geometric Theory , 2007, SIAM J. Math. Anal..

[61]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[62]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[63]  M. Goemans Network Ows , 2007 .

[64]  A. Chambolle,et al.  A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .

[65]  A. Chambolle,et al.  Implicit time discretization of the mean curvature flow with a discontinuous forcing term , 2008 .

[66]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[67]  Wotao Yin,et al.  Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..

[68]  William K. Allard Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..

[69]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .