Advances in Electron Microscopy with Deep Learning

This doctoral thesis covers some of my advances in electron microscopy with deep learning. Highlights include a comprehensive review of deep learning in electron microscopy; large new electron microscopy datasets for machine learning, dataset search engines based on variational autoencoders, and automatic data clustering by t-distributed stochastic neighbour embedding; adaptive learning rate clipping to stabilize learning; generative adversarial networks for compressed sensing with spiral, uniformly spaced and other fixed sparse scan paths; recurrent neural networks trained to piecewise adapt sparse scan paths to specimens by reinforcement learning; improving signal-to-noise; and conditional generative adversarial networks for exit wavefunction reconstruction from single transmission electron micrographs. This thesis adds to my publications by presenting their relationships, reflections, and holistic conclusions. This version of my thesis is typeset for online dissemination to improve readability, whereas the thesis submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy in Physics is typeset for physical printing and binding.

[1]  Guoyin Wang,et al.  NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing , 2018, ACL.

[2]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[3]  Samet Oymak,et al.  Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks , 2019, AISTATS.

[4]  Carl T. Bergstrom,et al.  Publication bias and the canonization of false facts , 2016, eLife.

[5]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[6]  Liwei Wang,et al.  The Expressive Power of Neural Networks: A View from the Width , 2017, NIPS.

[7]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[8]  Peter Nussbaum,et al.  Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE , 2020, J. Imaging.

[9]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[10]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[11]  Göran Falkman,et al.  Evaluation of Uncertainty Quantification in Deep Learning , 2020, IPMU.

[12]  Jeffrey M. Ede,et al.  Partial Scanning Transmission Electron Microscopy with Deep Learning , 2020, Scientific Reports.

[13]  Brian Nord,et al.  Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms , 2020 .

[14]  Guoyin Wang,et al.  Generative Adversarial Network Training is a Continual Learning Problem , 2018, ArXiv.

[15]  Mark Adam Dyson Advances in computational methods for transmission electron microscopy simulation and image processing , 2014 .

[16]  Alexander Gasnikov,et al.  Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping , 2020, NeurIPS.

[17]  Jeffrey M. Ede Autoencoders, Kernels, and Multilayer Perceptrons for Electron Micrograph Restoration and Compression , 2018, ArXiv.

[18]  Yong Yan,et al.  Visual Clustering Analysis of Electricity Data Based on t-SNE , 2020, 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA).

[19]  S. Pennycook The impact of STEM aberration correction on materials science. , 2017, Ultramicroscopy.

[20]  Shuai Li,et al.  Lensless computational imaging through deep learning , 2017, ArXiv.

[21]  Yibo Zhang,et al.  Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery , 2018, Optica.

[22]  Stefanie Jegelka,et al.  ResNet with one-neuron hidden layers is a Universal Approximator , 2018, NeurIPS.

[23]  Carlo Cambini,et al.  Ultra-fast broadband investment and adoption: A survey , 2019, Telecommunications Policy.

[24]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[25]  Saulius Gražulis,et al.  Computing stoichiometric molecular composition from crystal structures , 2015, Journal of applied crystallography.

[26]  Alex Kendall,et al.  Geometry and uncertainty in deep learning for computer vision , 2019 .

[27]  Cícero Nogueira dos Santos,et al.  Learning Implicit Generative Models by Matching Perceptual Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Prakarsh Kaushik,et al.  Fibre Optic Communication In 21st Century , 2020, 2020 International Conference on Intelligent Engineering and Management (ICIEM).

[30]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[31]  Dong Su,et al.  Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis , 2016, Nature Communications.

[32]  Richard S. Zemel,et al.  Learning Latent Subspaces in Variational Autoencoders , 2018, NeurIPS.

[33]  Yongdong Zhang,et al.  Deep Hashing Based on VAE-GAN for Efficient Similarity Retrieval , 2019 .

[34]  Mamta Mittal,et al.  Clustering approaches for high‐dimensional databases: A review , 2019, WIREs Data Mining Knowl. Discov..

[35]  Eirik Endeve,et al.  Dynamic scan control in STEM: spiral scans , 2016, Advanced Structural and Chemical Imaging.

[36]  Xiaoning Qian,et al.  Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator , 2020, UAI.

[37]  Senthil Mani,et al.  DLPaper2Code: Auto-generation of Code from Deep Learning Research Papers , 2018, AAAI.

[38]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[39]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[40]  Matthew Guzdial,et al.  Co-Creative Level Design via Machine Learning , 2018, AIIDE Workshops.

[41]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[42]  Jeffrey M. Ede Deep Learning Supersampled Scanning Transmission Electron Microscopy , 2019, ArXiv.

[43]  Nick Bostrom,et al.  Future Progress in Artificial Intelligence: A Survey of Expert Opinion , 2013, PT-AI.

[44]  R. T. Mathers,et al.  1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers† †Electronic supplementary information (ESI) available: Further polymer and nanostructure characterisation. See DOI: 10.1039/c7sc00641a Click here for additional data file. , 2017, Chemical science.

[45]  Michael Lehmann,et al.  Tutorial on Off-Axis Electron Holography , 2002, Microscopy and Microanalysis.

[46]  Sunil Agrawal,et al.  Image denoising review: From classical to state-of-the-art approaches , 2020, Inf. Fusion.

[47]  Arun Sharma,et al.  Scalable machine‐learning algorithms for big data analytics: a comprehensive review , 2016, Wiley Interdiscip. Rev. Data Min. Knowl. Discov..

[48]  Shadrokh Samavi,et al.  Modeling Neural Architecture Search Methods for Deep Networks , 2019, ArXiv.

[49]  G. Karlsson Thickness measurements of lacey carbon films , 2001, Journal of microscopy.

[50]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[51]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[52]  Gregory P. Meyer An Alternative Probabilistic Interpretation of the Huber Loss , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  F. Allen,et al.  The crystallographic information file (CIF) : a new standard archive file for crystallography , 1991 .

[54]  Olivier Bachem,et al.  Recent Advances in Autoencoder-Based Representation Learning , 2018, ArXiv.

[55]  R. Downs,et al.  The American Mineralogist crystal structure database , 2003 .

[56]  Q. Ramasse Twenty years after: How "Aberration correction in the STEM" truly placed a "A synchrotron in a Microscope". , 2017, Ultramicroscopy.

[57]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[58]  Chen Sun,et al.  Revisiting Unreasonable Effectiveness of Data in Deep Learning Era , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  The Microstructural Characterization of Multiferroic LaFeO3-YMnO3 Multilayers Grown on (001)- and (111)-SrTiO3 Substrates by Transmission Electron Microscopy , 2017, Materials.

[60]  Jeffrey M. Ede Improving Electron Micrograph Signal-to-Noise with an Atrous Convolutional Encoder-Decoder , 2018, Ultramicroscopy.

[61]  Apostol Natsev,et al.  YouTube-8M: A Large-Scale Video Classification Benchmark , 2016, ArXiv.

[62]  Sebastian Raschka,et al.  Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning , 2018, ArXiv.

[63]  Frank Hutter,et al.  Neural Architecture Search: A Survey , 2018, J. Mach. Learn. Res..

[64]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Wentian Li,et al.  Application of t-SNE to Human Genetic Data , 2017, bioRxiv.

[66]  H. Landau Sampling, data transmission, and the Nyquist rate , 1967 .

[67]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[68]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[69]  Jeffrey M. Ede,et al.  Exit Wavefunction Reconstruction from Single Transmission Electron Micrographs with Deep Learning [pre-print] , 2020 .

[70]  Fanny Orlhac,et al.  The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results , 2019, The Journal of Nuclear Medicine.

[71]  Luis Mateus Rocha,et al.  Singular value decomposition and principal component analysis , 2003 .

[72]  Jia Xu,et al.  Learning to See in the Dark , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[73]  Davide Castelvecchi,et al.  Google unveils search engine for open data , 2018, Nature.

[74]  Naoya Shibata,et al.  Theoretical framework of statistical noise in scanning transmission electron microscopy. , 2018, Ultramicroscopy.

[75]  Joost R. van Amersfoort,et al.  Simple and Scalable Epistemic Uncertainty Estimation Using a Single Deep Deterministic Neural Network , 2020, ICML 2020.

[76]  The history of broadband , 2020 .

[77]  Benedikt Wirth,et al.  Joint Denoising and Distortion Correction for Atomic Column Detection in Scanning Transmission Electron Microscopy Images , 2017, Microscopy and Microanalysis.

[78]  Kevin Smith,et al.  Bayesian Uncertainty Estimation for Batch Normalized Deep Networks , 2018, ICML.

[79]  Christoph Koch,et al.  Off-axis and inline electron holography: A quantitative comparison , 2010 .

[80]  Elmar Eisemann,et al.  GPGPU Linear Complexity t-SNE Optimization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[81]  D. Sculley,et al.  The ML test score: A rubric for ML production readiness and technical debt reduction , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[82]  Jonathan Le Roux,et al.  Autoclip: Adaptive Gradient Clipping for Source Separation Networks , 2020, 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP).

[83]  Maximilien Kintz,et al.  Can AutoML outperform humans? An evaluation on popular OpenML datasets using AutoML Benchmark , 2020, 2020 2nd International Conference on Artificial Intelligence, Robotics and Control.

[84]  Zhao Chen,et al.  GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks , 2017, ICML.

[85]  William McIlhagga,et al.  Estimates of edge detection filters in human vision , 2018, Vision Research.

[86]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[87]  T. Singhal A Review of Coronavirus Disease-2019 (COVID-19) , 2020, The Indian Journal of Pediatrics.

[88]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[89]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[90]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[91]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[92]  Ana Mlinarić,et al.  Dealing with the positive publication bias: Why you should really publish your negative results , 2017, Biochemia medica.

[93]  Michael Unser,et al.  Convolutional Neural Networks for Inverse Problems in Imaging: A Review , 2017, IEEE Signal Processing Magazine.

[94]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[95]  Michael I. Jordan,et al.  Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems , 1994, NIPS.

[96]  P. Nellist,et al.  Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy. , 2016, Physical review letters.

[97]  Yi Fang,et al.  Variational Deep Semantic Hashing for Text Documents , 2017, SIGIR.

[98]  Ivica Crnkovic,et al.  Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions , 2020, Inf. Softw. Technol..

[99]  Peng Peng,et al.  Unsupervised Anomaly Detection Using Variational Auto-Encoder based Feature Extraction , 2019, 2019 IEEE International Conference on Prognostics and Health Management (ICPHM).

[100]  Olivier Debeir,et al.  Robust Perceptual Night Vision in Thermal Colorization , 2020, VISIGRAPP.

[101]  Andrew Gordon Wilson,et al.  A Simple Baseline for Bayesian Uncertainty in Deep Learning , 2019, NeurIPS.

[102]  J. Llorca,et al.  Effect of layer thickness on the mechanical behaviour of oxidation-strengthened Zr/Nb nanoscale multilayers , 2017, Journal of Materials Science.

[103]  D. Blom,et al.  Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM , 2010, Proceedings of the National Academy of Sciences.

[104]  Peng Gang,et al.  Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer , 2018, 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI).

[105]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[106]  Davide Scaramuzza,et al.  A General Framework for Uncertainty Estimation in Deep Learning , 2020, IEEE Robotics and Automation Letters.

[107]  Boudewijn P F Lelieveldt,et al.  Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data , 2016, Proceedings of the National Academy of Sciences.

[108]  Kadda Beghdad-Bey,et al.  A Review of Clustering Algorithms for Big Data , 2019, 2019 International Conference on Networking and Advanced Systems (ICNAS).

[109]  A. Aurisano,et al.  Context-enriched identification of particles with a convolutional network for neutrino events , 2019, Physical Review D.

[110]  Hermann Ney,et al.  A Comparison of Transformer and LSTM Encoder Decoder Models for ASR , 2019, 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[111]  Marcus Liwicki,et al.  Improving Image Autoencoder Embeddings with Perceptual Loss , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[112]  Jameel Ahmed,et al.  Content-Based Image Retrieval and Feature Extraction: A Comprehensive Review , 2019, Mathematical Problems in Engineering.

[113]  Michael Gertz,et al.  Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection - A Remedy Against the Curse of Dimensionality? , 2017, SISAP.

[114]  Sony George,et al.  Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE. , 2020, Forensic science international.

[115]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[116]  Patrick Kidger,et al.  Universal Approximation with Deep Narrow Networks , 2019, COLT 2019.

[117]  John F. Canny,et al.  T-SNE-CUDA: GPU-Accelerated T-SNE and its Applications to Modern Data , 2018, 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).

[118]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[119]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[120]  D. Sculley,et al.  Hidden Technical Debt in Machine Learning Systems , 2015, NIPS.

[121]  Giuseppe Jurman,et al.  Not again! Data Leakage in Digital Pathology , 2019, 1909.06539.

[122]  Leslie J. Allen,et al.  Direct retrieval of a complex wave from its diffraction pattern , 2008 .

[123]  Tamás Linder,et al.  Asymptotic Optimality of Finite Model Approximations for Partially Observed Markov Decision Processes With Discounted Cost , 2017, IEEE Transactions on Automatic Control.

[124]  Bin Zheng,et al.  Optical and Digital Microscopic Imaging Techniques and Applications in Pathology , 2011, Analytical cellular pathology.

[125]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[126]  Kimin Lee,et al.  Using Pre-Training Can Improve Model Robustness and Uncertainty , 2019, ICML.

[127]  Steven Euijong Whang,et al.  A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective , 2018, IEEE Transactions on Knowledge and Data Engineering.

[128]  Sergei V. Kalinin,et al.  Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets , 2015, Advanced Structural and Chemical Imaging.

[129]  Renato Umeton,et al.  Automated machine learning: Review of the state-of-the-art and opportunities for healthcare , 2020, Artif. Intell. Medicine.

[130]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[131]  D. Qin,et al.  Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources , 2016 .

[132]  Marc Lebrun,et al.  An Analysis and Implementation of the BM3D Image Denoising Method , 2012, Image Process. Line.

[133]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[134]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[135]  Mehrdad Nourani,et al.  Nonlinear dimension reduction for EEG-based epileptic seizure detection , 2016, 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).

[136]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[137]  Allan Pinkus,et al.  Approximation theory of the MLP model in neural networks , 1999, Acta Numerica.

[138]  Isaiah Andrews,et al.  Identification of and Correction for Publication Bias , 2017, American Economic Review.

[139]  Tim Salimans,et al.  Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks , 2016, NIPS.

[140]  B. Miller,et al.  Real-Time Data Processing using Python in DigitalMicrograph , 2019, Microscopy and Microanalysis.

[141]  Lior Wolf,et al.  Conditional WGANs with Adaptive Gradient Balancing for Sparse MRI Reconstruction , 2019, ArXiv.

[142]  Josef Spidlen,et al.  Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets , 2019, Nature Communications.

[143]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[144]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[145]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[146]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[147]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[149]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[150]  M. Hutson Artificial intelligence faces reproducibility crisis. , 2018, Science.

[151]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[152]  B. Karthikeyan,et al.  Survey on FPGA Architecture and Recent Applications , 2019, 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN).

[153]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[154]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[155]  M. Kanatzidis,et al.  Cooling of melts: kinetic stabilization and polymorphic transitions in the KInSnSe 4 system. , 2004, Inorganic chemistry.

[156]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[157]  P. Jin,et al.  Correction of image drift and distortion in a scanning electron microscopy , 2015, Journal of microscopy.

[158]  Liyuan Liu,et al.  On the Variance of the Adaptive Learning Rate and Beyond , 2019, ICLR.

[159]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[160]  Loris Nanni,et al.  Impact of Lung Segmentation on the Diagnosis and Explanation of COVID-19 in Chest X-ray Images , 2020, Sensors.

[161]  Deborah F. Swayne,et al.  Data Visualization With Multidimensional Scaling , 2008 .

[162]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[163]  Amit Kumar Das,et al.  A Short Review on Different Clustering Techniques and Their Applications , 2019, Advances in Intelligent Systems and Computing.

[164]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[165]  Ricardo Ñanculef,et al.  A Binary Variational Autoencoder for Hashing , 2019, CIARP.

[166]  Sergei V. Kalinin,et al.  Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways , 2017, Scientific Reports.

[167]  Fan Zhang,et al.  Brief review of image denoising techniques , 2019, Visual Computing for Industry, Biomedicine, and Art.

[168]  Brian D. Earp,et al.  The need for reporting negative results - a 90 year update , 2017, Journal of clinical and translational research.

[169]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[170]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[171]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[172]  Mohamed Saber Naceur,et al.  Reinforcement learning for neural architecture search: A review , 2019, Image Vis. Comput..

[173]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[174]  Yiying Wu,et al.  Superconducting MgB2 Nanowires , 2001 .

[175]  Lavanya Ramakrishnan,et al.  Automated Labeling of Electron Microscopy Images Using Deep Learning , 2018, 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC).

[176]  C. T. Koch,et al.  Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity , 2014, Scientific Reports.

[177]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[178]  M. Tanaka,et al.  Convergent-beam electron diffraction. , 1994, Journal of electron microscopy.

[179]  L. Bendersky,et al.  Electron Diffraction Using Transmission Electron Microscopy , 2001, Journal of research of the National Institute of Standards and Technology.

[180]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[181]  Anurag Sarkar,et al.  Towards Game Design via Creative Machine Learning (GDCML) , 2020, 2020 IEEE Conference on Games (CoG).

[182]  Mark Sellke,et al.  Approximating Continuous Functions by ReLU Nets of Minimal Width , 2017, ArXiv.

[183]  David Silver,et al.  Memory-based control with recurrent neural networks , 2015, ArXiv.

[184]  L. Kourkoutis,et al.  Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures , 2020, Microscopy and Microanalysis.

[185]  Matthew Graydon,et al.  ‘Connecting the unconnected’: a critical assessment of US satellite Internet services , 2019, Media, Culture & Society.

[186]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[187]  H. Rose Optics of high-performance electron microscopes , 2008 .

[188]  Yuan Cao,et al.  Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks , 2018, ArXiv.

[189]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .