Anisotropic MHD model of the dayside magnetosheath downstream of the oblique bow shock

Large-scale flow in the dayside magnetosheath is calculated by using a three-dimensional anisotropic MHD model for the case when the angle between the interplanetary magnetic field and the solar wind velocity is 45°. The behavior of plasma and magnetic field parameters downstream of the quasi-perpendicular and quasi-parallel bow shocks is compared in the results from a single calculation. The model includes a limit on the proton temperature anisotropy based upon thresholds for onset of the ion cyclotron and mirror instabilities. Results are presented for three different values of the isotropization rate. The model shows the existence of the plasma depletion layer, corresponding to an increase of the magnetic field intensity and a decrease of the plasma density near the magnetopause, for all angles of the bow shock normal relative to the interplanetary magnetic field. There is a thin layer downstream of the quasi-parallel shock where T‖p > T⊥p. The magnetosheath regions are shown where the threshold conditions for ion cyclotron and mirror instabilities are satisfied.

[1]  B. Anderson,et al.  Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer , 1993 .

[2]  Daniel W. Swift,et al.  Numerical simulation of nonoscillatory mirror waves at the Earth's magnetosheath , 1986 .

[3]  B. Anderson,et al.  Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi-parallel magnetosheath , 1994 .

[4]  Wolfgang Baumjohann,et al.  Plasma and magnetic field behavior across the magnetosheath near local noon , 1995 .

[5]  Joseph Wang,et al.  Proton temperature anisotropy upper bound , 1997 .

[6]  V. Rusanov,et al.  On difference schemes of third order accuracy for nonlinear hyperbolic systems , 1970 .

[7]  D. Hunten,et al.  Depletion of solar wind plasma near a planetary boundary , 1976 .

[8]  G. S. Stiles,et al.  Observations of plasma depletion in the magnetosheath at the dayside magnetopause , 1979 .

[9]  M. I. Pudovkin,et al.  Application of the bounded anisotropy model for the dayside magnetosheath , 2000 .

[10]  T. Ogino A three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere - The generation of field-aligned currents , 1986 .

[11]  C. Farrugia,et al.  On the effects of solar wind dynamic pressure on the anisotropic terrestrial magnetosheath , 2000 .

[12]  B. Anderson,et al.  Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath , 1994 .

[13]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[14]  C. Russell,et al.  Observations of magnetohydrodynamic modes in the Earth's magnetosheath at 0600 LT , 1989 .

[15]  R. Denton,et al.  Effect of pressure anisotropy on the structure of a two-dimensional magnetosheath , 2000 .

[16]  D. Winske,et al.  Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks , 1988 .

[17]  C. Russell,et al.  Nature, properties, and origin of low‐frequency waves from an oblique shock to the inner magnetosheath , 1998 .

[18]  C. Russell,et al.  Density and magnetic field fluctuations observed by ISEE 1–2 in the quiet magnetosheath , 1995 .

[19]  Dan Winske,et al.  The proton cyclotron instability and the anisotropy/β inverse correlation , 1994 .

[20]  C. Wu MHD FLOW PAST AN OBSTACLE : LARGE-SCALE FLOW IN THE MAGNETOSHEATH , 1992 .

[21]  Brian J. Anderson,et al.  Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer , 1994 .

[22]  N. Omidi,et al.  Magnetosheath dynamics downstream of low Mach number shocks , 1996 .

[23]  T. Sanderson,et al.  The subsolar magnetosheath and magnetopause for high solar wind ram pressure : WIND observations , 1996 .

[24]  S. Cable,et al.  Three-dimensional MHD simulations of the interaction between venus and the solar wind , 1995 .

[25]  Brian J. Anderson,et al.  Bounded anisotropy fluid model for ion temperatures , 1994 .

[26]  G. Paschmann,et al.  The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations , 1994 .

[27]  H. Lühr,et al.  Ion thermalization in quasi-perpendicular shocks involving reflected ions , 1990 .

[28]  Richard E. Denton,et al.  Bounded anisotropy fluid model for ion temperature evolution applied to AMPTE/IRM magnetosheath data , 1995 .

[29]  C. Farrugia,et al.  Three‐dimensional, one‐fluid, ideal MHD model of magnetosheath flow with anisotropic pressure , 1999 .

[30]  R. Denton,et al.  Density depletion in an anisotropic magnetosheath , 1996 .

[31]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Y. Lin,et al.  Three‐dimensional MHD simulations of interplanetary rotational discontinuities impacting the Earth's bow shock and magnetosheath , 1998 .