Copy complexity of Horn formulas with respect to unit read-once resolution

[1]  Kazuo Iwama Complexity of Finding Short Resolution Proofs , 1997, MFCS.

[2]  Hajnal Andréka,et al.  The generalized completeness of Horn predicate-logic as a programming language , 1978, Acta Cybern..

[3]  Michael Frazier,et al.  Learning conjunctions of Horn clauses , 2004, Machine Learning.

[4]  Naoki Kobayashi,et al.  HoIce: An ICE-Based Non-linear Horn Clause Solver , 2018, APLAS.

[5]  David Monniaux,et al.  Combining Forward and Backward Abstract Interpretation of Horn Clauses , 2017, SAS.

[6]  Johann A. Makowsky,et al.  Why Horn Formulas Matter in Computer Science: Initial Structures and Generic Examples , 1987, J. Comput. Syst. Sci..

[7]  Cristopher Moore,et al.  A continuous-discontinuous second-order transition in the satisfiability of random Horn-SAT formulas , 2007, Random Struct. Algorithms.

[8]  Hans Kleine Büning,et al.  Read-Once Unit Resolution , 2003, SAT.

[9]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[10]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[11]  Kazuo Iwama,et al.  Intractability of read-once resolution , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[12]  K. Subramani,et al.  On Unit Read-Once Resolutions and Copy Complexity , 2020, COCOA.

[13]  K. Subramani,et al.  A Polynomial Time Algorithm for Read-Once Certification of Linear Infeasibility in UTVPI Constraints , 2019, Algorithmica.

[14]  Sagar Chaki,et al.  SMT-based model checking for recursive programs , 2014, Formal Methods in System Design.

[15]  Hans Kleine Büning,et al.  Finding read-once resolution refutations in systems of 2CNF clauses , 2018, Theor. Comput. Sci..

[16]  Hans van Maaren,et al.  Hidden Threshold Phenomena for Fixed-Density SAT-formulae , 2003, SAT.

[17]  John P. Gallagher,et al.  Rahft: A Tool for Verifying Horn Clauses Using Abstract Interpretation and Finite Tree Automata , 2016, CAV.

[18]  John Yen,et al.  Introduction , 2004, CACM.

[19]  Hans Kleine Büning,et al.  The Complexity of Finding Read-Once NAE-Resolution Refutations , 2017, ICLA.

[20]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[21]  Philipp Rümmer,et al.  The ELDARICA Horn Solver , 2018, 2018 Formal Methods in Computer Aided Design (FMCAD).

[22]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[23]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[24]  Andrey Rybalchenko,et al.  Synthesizing software verifiers from proof rules , 2012, PLDI.

[25]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[26]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[27]  Gopal Gupta,et al.  Horn Logic Denotations and Their Applications , 1999, The Logic Programming Paradigm.

[28]  Stefan Woltran,et al.  Answer set programming unleashed! , 2018, KI - Künstliche Intelligenz.

[29]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[30]  Grigory Fedyukovich,et al.  Solving Constrained Horn Clauses Using Syntax and Data , 2018, 2018 Formal Methods in Computer Aided Design (FMCAD).

[31]  Alberto Pettorossi,et al.  VeriMAP: A Tool for Verifying Programs through Transformations , 2014, TACAS.

[32]  M. Krom The Decision Problem for a Class of First‐Order Formulas in Which all Disjunctions are Binary , 1967 .

[33]  John N. Hooker,et al.  Generalized resolution and cutting planes , 1988 .

[34]  Hans Kleine Büning,et al.  The Complexity of Read-Once Resolution , 2004, Annals of Mathematics and Artificial Intelligence.

[35]  Hans Kleine Büning,et al.  Read-Once Resolutions in Horn Formulas , 2019, FAW.

[36]  Ilkka Niemelä,et al.  The Answer Set Programming Paradigm , 2016, AI Mag..