Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

[1]  Jacob Kielland Individual Activity Coefficients of Ions in Aqueous Solutions , 1937 .

[2]  T. Bauchop,et al.  The growth of micro-organisms in relation to their energy supply. , 1960, Journal of general microbiology.

[3]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  T. G. Watson,et al.  Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. , 1970, Journal of general microbiology.

[5]  A. H. Stouthamer,et al.  Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. , 1973, Biochimica et biophysica acta.

[6]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[7]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[8]  K. Hellingwerf,et al.  Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Miyajima,et al.  Studies on Aqueous Solutions of Saccharides. I. Activity Coefficients of Monosaccharides in Aqueous Solutions at 25 °C , 1983 .

[10]  D. Morris,et al.  Standard chemical exergy of some elements and compounds on the planet earth , 1986 .

[11]  Jan Szargut,et al.  Exergy Analysis of Thermal, Chemical, and Metallurgical Processes , 1988 .

[12]  W. A. Scheffers,et al.  Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[13]  W. A. Scheffers,et al.  Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[14]  S. Sandler,et al.  On the thermodynamics of microbial growth processes , 1991, Biotechnology and bioengineering.

[15]  I. Landau,et al.  Measurement of limiting activity coefficients using non-steady-state gas chromatography , 1991 .

[16]  E. H. Battley An alternate method of calculating the heat of growth of Escherichia coli K‐12 on succinic acid , 1991, Biotechnology and bioengineering.

[17]  J. Heijnen,et al.  In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms , 1992, Biotechnology and bioengineering.

[18]  J. G. Kuenen,et al.  Continuous measurement of microbial heat production in laboratory fermentors , 1993, Biotechnology and bioengineering.

[19]  J. Russell,et al.  Energetics of bacterial growth: balance of anabolic and catabolic reactions. , 1995, Microbiological reviews.

[20]  I. Marison,et al.  On-line detection of baseline variations through torque measurements in isothermal reaction calorimeters☆ , 1995 .

[21]  M. Mavrovouniotis Duality theory for thermodynamic bottlenecks in bioreaction pathways , 1996 .

[22]  J. Nielsen,et al.  Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. , 1997, Microbiology.

[23]  E. H. Battley An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth , 1999 .

[24]  U. von Stockar,et al.  Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. , 1999, Biochimica et biophysica acta.

[25]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[26]  I. S. Horváth,et al.  Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. , 2001, Biotechnology and bioengineering.

[27]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[28]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[29]  B. Palsson,et al.  Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. A. Scheffers,et al.  A theoretical evaluation of growth yields of yeasts , 2004, Antonie van Leeuwenhoek.

[31]  C. Verduyn Physiology of yeasts in relation to biomass yields , 1991, Antonie van Leeuwenhoek.

[32]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[33]  J. Vanbriesen Evaluation of methods to predict bacterialyield using thermodynamics , 2004, Biodegradation.

[34]  U. von Stockar,et al.  How reliable are thermodynamic feasibility statements of biochemical pathways? , 2005, Biotechnology and bioengineering.

[35]  J. Pronk,et al.  Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. , 2005, FEMS yeast research.

[36]  I. Marison,et al.  Thermodynamics of microbial growth and metabolism: an analysis of the current situation. , 2006, Journal of biotechnology.

[37]  S. Panke,et al.  Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data , 2006, Molecular systems biology.

[38]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[39]  U. Stockar,et al.  A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields , 2007 .

[40]  V. Hatzimanikatis,et al.  Thermodynamics-based metabolic flux analysis. , 2007, Biophysical journal.

[41]  J. Russell The Energy Spilling Reactions of Bacteria and Other Organisms , 2007, Journal of Molecular Microbiology and Biotechnology.

[42]  Andreas Hoppe,et al.  Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks , 2007, BMC Systems Biology.

[43]  A. H. Stouthamer A theoretical study on the amount of ATP required for synthesis of microbial cell material , 2007, Antonie van Leeuwenhoek.

[44]  U. Stockar,et al.  Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes , 2008 .

[45]  Bernhard O. Palsson,et al.  Connecting Extracellular Metabolomic Measurements to Intracellular Flux States in Yeast , 2022 .

[46]  H. Kooi,et al.  The second-law implications of biochemical energy conversion: exergy analysis of glucose and fatty-acid breakdown in the living cell , 2009 .

[47]  J. Roels Application of macroscopic principles to microbial metabolism. , 1980, Biotechnology and bioengineering.

[48]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.