Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*

This paper presents two fast cycle canceling algorithms for the submodular flow problem. The first uses an assignment problem whose optimal solution identifies most negative node-disjoint cycles in an auxiliary network. Canceling these cycles lexicographically makes it possible to obtain an optimal submodular flow in O(n4h log(nC)) time, which almost matches the current fastest weakly polynomial time for submodular flow (where n is the number of nodes, h is the time for computing an exchange capacity, and C is the maximum absolute value of arc costs). The second algorithm generalizes Goldberg’s cycle canceling algorithm for min cost flow to submodular flow to also get a running time of O(n4h log(nC)).. We show how to modify these algorithms to make them strongly polynomial, with running times of O(n6h log n), which matches the fastest strongly polynomial time bound for submodular flow. We also show how to extend both algorithms to solve submodular flow with separable convex objectives.

[1]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[2]  Satoru Iwata,et al.  Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow , 2000, Math. Oper. Res..

[3]  Satoru Iwata,et al.  A faster capacity scaling algorithm for minimum cost submodular flow , 2002, Math. Program..

[4]  S. Fujishige,et al.  New algorithms for the intersection problem of submodular systems , 1992 .

[5]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[6]  Satoru Fujishige,et al.  A note on the Frank—Tardos bi-truncation algorithm for crossing-submodular functions , 1992, Math. Program..

[7]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[8]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[9]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[10]  Uwe T. Zimmermann,et al.  A polynomial cycle canceling algorithm for submodular flows , 1999, Math. Program..

[11]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[12]  Éva Tardos,et al.  Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..

[13]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[14]  Satoru Iwata,et al.  A faster algorithm for minimum cost submodular flows , 1998, SODA '98.

[15]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[16]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[17]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[18]  E. L. Lawler,et al.  Computing Maximal "Polymatroidal" Network Flows , 1982, Math. Oper. Res..

[19]  S. Thomas McCormick,et al.  Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications , 1997, SIAM J. Comput..

[20]  P. Schönsleben Ganzzahlige Polymatroid-Intersektions-Algorithmen , 1980 .

[21]  Satoru Iwata,et al.  A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem , 1999, IPCO.

[22]  András Frank,et al.  Generalized polymatroids and submodular flows , 1988, Math. Program..

[23]  S. Fujishige ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .

[24]  András Frank,et al.  Finding feasible vectors of Edmonds-Giles polyhedra , 1984, J. Comb. Theory, Ser. B.

[25]  Satoru Fujishige,et al.  A Strongly Polynomial Algorithm for Minimum Cost Submodular Flow Problems , 1989, Math. Oper. Res..

[26]  S. Fujishige,et al.  A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION , 1988 .

[27]  Satoru Iwata,et al.  A capacity scaling algorithm for convex cost submodular flows , 1996, SODA '96.

[28]  Satoru Iwata,et al.  A fast cost scaling algorithm for submodular flow , 2000, Inf. Process. Lett..

[29]  Refael Hassin Minimum cost flow with set-constraints , 1982, Networks.

[30]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[31]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[32]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[33]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[34]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[35]  András Frank,et al.  A Primal-Dual Algorithm for Submodular Flows , 1985, Math. Oper. Res..

[36]  Uwe T. Zimmermann Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..