Exceptionally high H2 storage by a metal-organic polyhedral framework.

The desolvated polyhedral framework material NOTT-112 shows an excess H(2) uptake of 7.07 wt% between 35 and 40 bar at 77 K, and a total H(2) uptake of 10 wt% at 77 bar and 77 K.

[1]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[2]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[3]  Daqiang Yuan,et al.  Enhancing H2 uptake by "close-packing" alignment of open copper sites in metal-organic frameworks. , 2008, Angewandte Chemie.

[4]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[5]  Young Eun Cheon,et al.  A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. , 2008, Angewandte Chemie.

[6]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[7]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[8]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[9]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[10]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[11]  A. J. Blake,et al.  Twelve-connected porous metal-organic frameworks with high H(2) adsorption. , 2007, Chemical communications.

[12]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[13]  T. Uemura,et al.  Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers. , 2006, Angewandte Chemie.

[14]  Robert J Hill,et al.  New approaches to the analysis of high connectivity materials: design frameworks based upon 4(4)- and 6(3)-subnet tectons. , 2005, Accounts of chemical research.

[15]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[16]  H. Chun,et al.  Low-level self-assembly of open framework based on three different polyhedra: metal-organic analogue of face-centered cubic dodecaboride. , 2008, Journal of the American Chemical Society.

[17]  Kimoon Kim,et al.  A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. , 2006, Angewandte Chemie.

[18]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[19]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[20]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[21]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[22]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: natural tilings for nets. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[23]  Michael J Zaworotko,et al.  Bottom up synthesis that does not start at the bottom: quadruple covalent cross-linking of nanoscale faceted polyhedra. , 2007, Journal of the American Chemical Society.

[24]  Anthony L. Spek,et al.  Journal of , 1993 .

[25]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[26]  S. Kitagawa,et al.  Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3',5,5'-tetrametyl-4,4'-bipyrazolate. , 2008, Journal of the American Chemical Society.

[27]  A. Neimark,et al.  Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption , 1997 .

[28]  Michael J. Zaworotko,et al.  Nanoballs: nanoscale faceted polyhedra with large windows and cavities , 2001 .

[29]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[30]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[31]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[32]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[33]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[34]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[35]  Wenbin Lin,et al.  Nanoscale coordination polymers for platinum-based anticancer drug delivery. , 2008, Journal of the American Chemical Society.

[36]  N. Champness,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[37]  A. J. Blake,et al.  A biporous coordination framework with high H2 storage density. , 2008, Chemical communications.