On-chip Frequency Comb Generation at Visible Wavelengths via Simultaneous Second-and Third-order Optical Nonlinearities References and Links

Microresonator-based frequency comb generation at or near visible wavelengths would enable applications in precise optical clocks, frequency metrology, and biomedical imaging. Comb generation in the visible has been limited by strong material dispersion and loss at short wavelengths, and only very narrowband comb generation has reached below 800 nm. We use the second-order optical nonlinearity in an integrated high-Q silicon nitride ring resonator cavity to convert a near-infrared frequency comb into the visible range. We simultaneously demonstrate parametric frequency comb generation in the near-infrared, second-harmonic generation, and sum-frequency generation. We measure 17 comb lines converted to visible wavelengths extending to 765 nm.

[1]  M. Lipson,et al.  Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. , 2014, Optics letters.

[2]  Minoru Fujii,et al.  An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations , 2014 .

[3]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[4]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[5]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[6]  Heinrich Kurz,et al.  Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides. , 2013, Optics express.

[7]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[8]  M. Lipson,et al.  Overcoming SiN film stress limitations for high quality factor ring resonators , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[9]  L. D. Negro,et al.  Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films , 2013 .

[10]  Dylan F. Logan,et al.  Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides , 2013 .

[11]  Michal Lipson,et al.  Modelocking and femtosecond pulse generation in chip-based frequency combs. , 2012, Optics express.

[12]  U. Levy,et al.  Nanoscale light–matter interactions in atomic cladding waveguides , 2012, Nature Communications.

[13]  Michal Lipson,et al.  Broadband parametric frequency comb generation with a 1-μm pump source. , 2012, Optics express.

[14]  M. Kauranen,et al.  Efficient second-harmonic generation in silicon nitride resonant waveguide gratings. , 2012, Optics letters.

[15]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[16]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[17]  M. Kauranen,et al.  Strong second-harmonic generation in silicon nitride films , 2012 .

[18]  S Wabnitz,et al.  Second-harmonic generation in silicon waveguides strained by silicon nitride. , 2012, Nature materials.

[19]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[20]  T. Krauss,et al.  Nonlinear optics in Silicon photonic crystal cavities , 2011, 2011 13th International Conference on Transparent Optical Networks.

[21]  Scott A. Diddams,et al.  Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb , 2011, 1106.2487.

[22]  Vladimir S. Ilchenko,et al.  Kerr combs with selectable central frequency , 2011 .

[23]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[24]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[25]  Martin M A Sieber,et al.  2015 17th International Conference on Transparent Optical Networks (ICTON) , 2011 .

[26]  M. Lipson,et al.  Chip-based optical interactions with Rubidium vapor , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[27]  Jeremy L O'Brien,et al.  2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS) , 2010 .

[28]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[29]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[30]  Enrico Rubiola,et al.  Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. , 2008, Optics express.

[31]  T. Kippenberg,et al.  Full stabilization of a microresonator-based optical frequency comb. , 2008, Physical review letters.

[32]  J. Vanier,et al.  The passive optically pumped Rb frequency standard: the laser approach , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[33]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[34]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[35]  J. Vanier Atomic clocks based on coherent population trapping: a review , 2005 .

[36]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[37]  André Clairon,et al.  Towards an accurate frequency standard at λ778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium , 1994 .

[38]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.