Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation

[1]  Karel Bouzek,et al.  Membrane electrolysis—History, current status and perspective , 2016 .

[2]  Suk Woo Nam,et al.  Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature , 2016 .

[3]  C. Muryn,et al.  Photoelectron Spectroscopy Study of Stoichiometric and Reduced Anatase TiO2(101) Surfaces: The Effect of Subsurface Defects on Water Adsorption at Near-Ambient Pressures , 2015 .

[4]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[5]  Hyungsun Kim,et al.  Thermal characterization of titanium hydride in thermal oxidation process , 2012 .

[6]  Desheng Kong,et al.  Electrochemical Anodic Dissolution Kinetics of Titanium in Fluoride-Containing Perchloric Acid Solutions at Open-Circuit Potentials , 2009 .

[7]  G. El-Mahdy Formation and dissolution behavior of anodic oxide films on titanium in oxalic acid solutions , 2007 .

[8]  S. Yamanaka,et al.  Electrical and thermal properties of titanium hydrides , 2006 .

[9]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[10]  K. Riahi,et al.  The hydrogen economy in the 21st century: a sustainable development scenario , 2003 .

[11]  C. Briant,et al.  Hydrogen embrittlement of commercial purity titanium , 2002 .

[12]  J. Sanz,et al.  Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy‐loss spectroscopy , 2002 .

[13]  S. Bernasek,et al.  Oxidation of a polycrystalline titanium surface by oxygen and water , 2000 .

[14]  V. Henrich,et al.  Comparison of Ti 2p Core-Level Peaks from TiO2, Ti2O3, and Ti Metal, by XPS , 1998 .

[15]  V. V. Lunin,et al.  Investigation of Titanium Hydride Oxidation Process. , 1998 .

[16]  J. Krýsa,et al.  Corrosion rate of titanium in H2SO4 , 1997 .

[17]  T. Madey,et al.  TiO2 by XPS , 1996 .

[18]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[19]  C. Comninellis,et al.  Characterization of DSA-type oxygen evolving electrodes. Choice of base metal , 1991 .

[20]  David E. Williams,et al.  A sims investigation of hydrogen penetration of titanium electrodes , 1989 .

[21]  A. Mazhar,et al.  Anodic Behavior of Titanium in Aqueous Media , 1988 .

[22]  S. A. Salih,et al.  Nature of the Corrosion Reaction at the Anodic Oxide Film on Titanium in HCl Solutions , 1984 .

[23]  J. Davis,et al.  Hydrogen in titanium alloys , 1981 .

[24]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[25]  T. W. Haas,et al.  Characterization of TiHx and TiD0.9 surfaces: AES, ELS, SIMS and XPS studies , 1980 .

[26]  L. Covington The Influence of Surface Condition and Environment on the Hydriding of Titanium , 1979 .

[27]  T. Morozumi,et al.  Growth Rate of Hydride Layer Produced on Titanium Surface by Cathodic Polarization , 1977 .

[28]  M. Miles,et al.  Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies , 1976 .

[29]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[30]  G. Caskey Diffusion of tritium in rutile (TiO2) , 1974 .

[31]  K. Nobe,et al.  Corrosion Behavior of Titanium in HQ , 1973 .

[32]  J. Myers,et al.  Anodic Polarization Behavior of Titanium and Titanium Alloys in Sulfuric Acids , 1967 .

[33]  M. Stern,et al.  The Influence of Noble Metal Alloy Additions on the Electrochemical and Corrosion Behavior of Titanium , 1959 .

[34]  M. D. Gibbons,et al.  Gettering of Gas by Titanium , 1955 .

[35]  M. Straumanis,et al.  The Corrosion of Titanium in Acids—The Rate of Dissolution in Sulfuric, Hydrochloric, Hydrobromic and Hydroiodic Acids★ , 1951 .

[36]  M. Straumanis,et al.  The Mechanism and Rate of Dissolution of Titanium in Hydrofluoric Acid , 1951 .

[37]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .

[38]  S. Ramanathan,et al.  A Kinetic Model for the Anodic Dissolution of Ti in HF in the Active and Passive Regions , 2015 .

[39]  E. Asselin,et al.  Influence of Cupric, Ferric, and Chloride on the Corrosion of Titanium in Sulfuric Acid Solutions Up to 85°C , 2014 .

[40]  C. Veiga,et al.  PROPERTIES AND APPLICATIONS OF TITANIUM ALLOYS: A BRIEF REVIEW , 2012 .

[41]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[42]  Y. Fukai Phase Diagrams of Transition Metal-Hydrogen Systems , 1991 .

[43]  N. Sato An overview on the passivity of metals , 1990 .

[44]  L. Shreir,et al.  Hydride formation during cathodic polarization of Ti—II. Effect of temperature and pH of solution on hydride growth , 1974 .