On polynomials and surfaces of variously positive links

It is known that the minimal degree of the Jones polynomial of a positive knot is equal to its genus, and the minimal coefficient is $1$, with a similar relation for links. We extend this result to almost positive links and partly identify the 3 following coefficients for special types of positive links. We also give counterexamples to the Jones polynomial-ribbon genus conjectures for a quasipositive knot. Then we show that the Alexander polynomial completely detects the minimal genus and fiber property of canonical Seifert surfaces associated to almost positive (and almost alternating) link diagrams.

[1]  D. Rolfsen Knots and Links , 2003 .

[2]  Alexander Stoimenow,et al.  The Alexander polynomial of planar even valence graphs , 2003, Adv. Appl. Math..

[3]  A. Stoimenow Knots of genus two , 2003, math/0303012.

[4]  A. Stoimenow SOME INEQUALITIES BETWEEN KNOT INVARIANTS , 2002 .

[5]  T. Kawamura Relations among the lowest degree of the Jones polynomial and geometric invariants for a closed positive braid , 2002 .

[6]  A. Stoimenow On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks , 2001, math/0110016.

[7]  M. Ozawa Closed incompressible surfaces in the complements of positive knots , 2001, math/0104219.

[8]  A. Stoimenow Some Examples Related to 4‐Genera, Unknotting Numbers and Knot Polynomials , 2001 .

[9]  D. Kreimer Knots and Feynman Diagrams , 2000 .

[10]  Takuji Nakamura Four-genus and unknotting number of positive knots and links , 2000 .

[11]  M. Hirasawa Triviality and splittability of special almost alternating links via canonical Seifert surfaces , 2000 .

[12]  Ryosuke Yamamoto,et al.  Almost Alternating Diagrams and Fibered Links in S3 , 1999, math/9904043.

[13]  A. Stoimenow Positive knots, closed braids and the Jones polynomial , 1998, math/9805078.

[14]  L. Rudolph Positive links are strongly quasipositive , 1998, math/9804003.

[15]  N. A'campo Generic immersions of curves, knots, monodromy and Gordian number , 1998, math/9803081.

[16]  A. Stoimenow Gauss sums on almost positive knots , 1998, math/9803073.

[17]  L. Zulli The Rank of the Trip Matrix of a Positive Knot Diagram , 1997 .

[18]  P. Kronheimer,et al.  Gauge theory for embedded surfaces, II , 1993 .

[19]  P. Cromwell Positive Braids are Visually Prime , 1993 .

[20]  L. Rudolph Quasipositivity as an obstruction to sliceness , 1993, math/9307233.

[21]  Y. Yokota Polynomial invariants of positive links , 1992 .

[22]  Timothy D. Comar,et al.  Almost alternating links , 1992 .

[23]  P. Cromwell,et al.  POSITIVITY OF KNOT POLYNOMIALS ON POSITIVE LINKS , 1992 .

[24]  Pierre Vogel,et al.  Representation of links by braids: A new algorithm , 1990 .

[25]  K. Murasugi,et al.  The skein polynomial of a planar star product of two links , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  M. Thistlethwaite,et al.  Some links with non-trivial polynomials and their crossing-numbers , 1988 .

[27]  M. Thistlethwaite,et al.  On the Kauffman polynomial of an adequate link , 1988 .

[28]  V. Jones Hecke algebra representations of braid groups and link polynomials , 1987 .

[29]  K. Murasugi Jones polynomials and classical conjectures in knot theory. II , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Shuji Yamada The minimal number of Seifert circles equals the braid index of a link , 1987 .

[31]  Hugh R. Morton,et al.  The 2-variable polynomial of cable knots , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  David Gabai Detecting fibred links inS3 , 1986 .

[33]  H. Morton Seifert circles and knot polynomials , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Kenneth C. Millett,et al.  A new polynomial invariant of knots and links , 1985 .

[35]  L. Rudolph Braided surfaces and seifert ribbons for closed braids , 1983 .

[36]  R. Kirby,et al.  Prime knots and concordance , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  K. Murasugi On a Certain Subgroup of the Group of an Alternating Link , 1963 .

[38]  H. Trotter,et al.  A class of pretzel knots , 1963 .

[39]  P. Kronheimer,et al.  Gauge theory for embedded surfaces , II , 1997 .

[40]  K. Murasugi On the braid index of alternating links , 1991 .

[41]  T. Fiedler On the degree of the Jones polynomial , 1991 .

[42]  Robert E. Gompf,et al.  Applications of Donaldson's theorems to classical knot concordance, homology 3-spheres and Property P , 1988 .

[43]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[44]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[45]  K. Millett,et al.  A polynomial invariant of oriented links , 1987 .

[46]  W. Lickorish The unknotting number of a classical knot , 1985 .

[47]  David Gabai Foliations and genera of links , 1984 .

[48]  David Gabai The murasugi sum is a natural geometric operation , 1983 .

[49]  Joan S. Birman,et al.  Knotted periodic orbits in dynamical systems—I: Lorenz's equation , 1983 .

[50]  J. Milnor Singular points of complex hypersurfaces , 1968 .