How to Transform Canonical Decreasing CTRSs into Equivalent Canonical TRSs

We prove constructively that the class of ground-confluent and decreasing conditional term rewriting systems (CTRSs) (without extra variables) coincides with the class of orthogonal and terminating, unconditional term rewriting systems (TRSs). TRSs being included in CTRSs, this result follows from a transformation from any ground-confluent and decreasing CTRS specifying a computable function f into a TRS with the mentioned properties for f. The generated TRS is ordersorted, but we outline a similar transformation yielding an unsorted TRS.

[1]  Jan A. Bergstra,et al.  A Characterisation of Computable Data Types by Means of a Finite Equational Specification Method , 1980, ICALP.

[2]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[3]  Corrado Moiso,et al.  An Extension of WAM for K-LEAF: A WAM-based Compilation of Conditional Narrowing , 1989, ICLP.

[4]  Michael Hanus,et al.  The Integration of Functions into Logic Programming: From Theory to Practice , 1994, J. Log. Program..

[5]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[6]  Stanley Burris,et al.  Discriminator Varieties and Symbolic Computation , 1992, J. Symb. Comput..

[7]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[8]  Nachum Dershowitz,et al.  Equational programming , 1988 .

[9]  Max Dauchet Simulation of Turning Machines by a Left-Linear Rewrite Rule , 1989, RTA.

[10]  G. Sivakumar,et al.  Proofs and computations in conditional equational theories , 1990 .

[11]  Wayne Snyder,et al.  Basic Paramodulation and Superposition , 1992, CADE.

[12]  Nachum Dershowitz,et al.  An Implementation of Narrowing , 1989, J. Log. Program..

[13]  Harald Ganzinger A Completion Procedure for Conditional Equations , 1987, CTRS.

[14]  Isabelle Gnaedig,et al.  ELIOS-OBJ Theorem Proving in a Specification Language , 1992, ESOP.

[15]  J. V. Tucker,et al.  A characterization of computable data types by means of a finite, equational specification mehod , 1980 .

[16]  Joseph A. Goguen,et al.  The Rewrite Rule Machine Project , 1989 .

[17]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[18]  Jan A. Bergstra,et al.  Conditional Rewrite Rules: Confluence and Termination , 1986, J. Comput. Syst. Sci..

[19]  Harald Ganzinger,et al.  A Completion Procedure for Conditional Equations , 1988, J. Symb. Comput..

[20]  Nachum Dershowitz,et al.  A Rationale for Conditional Equational Programming , 1990, Theor. Comput. Sci..

[21]  Gérard Huet,et al.  On the Uniform Halting Problem for Term Rewriting Systems , 1978 .

[22]  Claude Kirchner,et al.  Implementing Parallel Rewriting , 1990, PLILP.

[23]  Stéphane Kaplan,et al.  A Compiler for Conditional Term Rewriting Systems , 1987, RTA.

[24]  Claude Kirchner,et al.  Implementing Parallel Rewriting , 1990, PLILP.

[25]  Michael Hanus,et al.  On Extra Variables in (Equational) Logic Programming , 1995, ICLP.

[26]  Jan A. Bergstra,et al.  Algebraic Specifications of Computable and Semicomputable Data Types , 1987, Theor. Comput. Sci..

[27]  Harald Ganzinger,et al.  Order-Sorted Completion: The Many-Sorted Way , 1991, Theor. Comput. Sci..

[28]  Corrado Moiso,et al.  Notes on the Elimination of Conditions , 1987, CTRS.

[29]  José Meseguer,et al.  Compiling Concurrent Rewriting onto the Rewrite Rule Machine , 1990, CTRS.