Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals

S-band metals such as alkali and alkaline earth metals do not undergo a superconducting transition (SCT) at ambient pressure, but their high-pressure phases do. By contrast, room-temperature stable electride [Ca24Al28O64]4+⋅4e− (C12A7:e−) in which anionic electrons in the crystallographic sub-nanometer-size cages have high s-character exhibits SCT at 0.2–0.4 K at ambient pressure. In this paper, we report that crystal and electronic structures of C12A7:e− are close to those of the high-pressure superconducting phase of alkali and alkaline earth metals and the SCT of both materials is induced when electron nature at Fermi energy (EF) switches from s- to sd-hybridized state.

[1]  Li Dong,et al.  A First-Principles Study on CrZrMnGa , 2015 .

[2]  H. Hosono,et al.  Strong enhancement of superconductivity in inorganic electride 12CaO·7Al2O3:e− under high pressure , 2013 .

[3]  R. Needs,et al.  Thermodynamically stable phases of carbon at multiterapascal pressures. , 2012, Physical review letters.

[4]  Chris J Pickard,et al.  Aluminium at terapascal pressures. , 2010, Nature materials.

[5]  J. L. Dye Electrides: Early Examples of Quantum Confinement , 2010 .

[6]  H. Ohta,et al.  Thermal conductivity and Seebeck coefficient of 12 CaO ⋅ 7 Al 2 O 3 electride with a cage structure , 2009 .

[7]  Yanming Ma,et al.  Transparent dense sodium , 2009, Nature.

[8]  Yansun Yao,et al.  Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory , 2009 .

[9]  K. Shimizu,et al.  Crystal structures of calcium IV and V under high pressure. , 2008, Physical review letters.

[10]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[11]  H. Hosono,et al.  Evidence for Bardeen-Cooper-Schrieffer-type superconducting behavior in the electride (CaO)12(Al2O3)7:e- from heat capacity measurements , 2008 .

[12]  T. Kamiya,et al.  Localized and Delocalized Electrons in Room-Temperature Stable Electride [Ca24Al28O64]4+(O2-)2-x(e-)2x : Analysis of Optical Reflectance Spectra , 2008 .

[13]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[14]  H. Hosono,et al.  Superconductivity in an inorganic electride 12CaO x 7Al2O3:e-. , 2007, Journal of the American Chemical Society.

[15]  E. Pentti,et al.  Superconductivity in lithium below 0.4 millikelvin at ambient pressure , 2007, Nature.

[16]  T. Kamiya,et al.  Metallic state in a lime-alumina compound with nanoporous structure. , 2007, Nano letters.

[17]  É. Bustarret Superconductivity in Doped Cubic Silicon. , 2007 .

[18]  C. Rao,et al.  The possibility of a liquid superconductor. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  K. Shimizu,et al.  Superconductivity of Ca exceeding 25 K at megabar pressures , 2006 .

[20]  N. Christensen,et al.  Calculated superconductive properties of Li and Na under pressure , 2006 .

[21]  H. Hosono,et al.  Czochralski Growth of 12CaO·7Al2O3 Crystals , 2006 .

[22]  J. Hamlin,et al.  Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89 GPa , 2006, cond-mat/0601213.

[23]  G. Profeta,et al.  Superconductivity in lithium, potassium, and aluminum under extreme pressure: a first-principles study. , 2005, Physical review letters.

[24]  H. Hosono,et al.  Electron localization and a confined electron gas in nanoporous inorganic electrides. , 2003, Physical review letters.

[25]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[26]  S. Deemyad,et al.  Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. , 2003, Physical review letters.

[27]  H. Mao,et al.  Superconductivity in Dense Lithium. , 2003 .

[28]  Hideo Hosono,et al.  Light‐Induced Conversion of an Insulating Refractory Oxide into a Persistent Electronic Conductor. , 2003 .

[29]  Katsuya Shimizu,et al.  Superconductivity in compressed lithium at 20 K , 2002, Nature.

[30]  K. Shimizu,et al.  Superconductivity in the non-magnetic state of iron under pressure , 2001, Nature.

[31]  K. Syassen,et al.  New High‐Pressure Phases of Lithium. , 2001 .

[32]  J. Neaton,et al.  On the constitution of sodium at higher densities. , 2000, Physical review letters.

[33]  P. Edwards Polarons, Bipolarons, and Possible High-Tc Superconductivity in Metal-Ammonia Solutions , 2000 .

[34]  J. B. Neaton,et al.  Pairing in dense lithium , 1999, Nature.

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[37]  A. Overhauser Crystal Structure of Lithium at 4.2 K , 1984 .

[38]  P. Hertel TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1971 .

[39]  H. Lipson Crystal Structures , 1949, Nature.

[40]  J. Bednorz,et al.  Possible High T c Superconductivity in the BaL a-C u-0 System , 2022 .