Intersecting Two-Dimensional Fractals with Lines
暂无分享,去创建一个
[1] Andreas Stein,et al. High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams , 2004 .
[2] Shigeki Akiyama,et al. On canonical number systems , 2002, Theor. Comput. Sci..
[3] Shigeki Akiyama,et al. Topological properties of two-dimensional number systems , 2000 .
[4] Jean Berstel,et al. Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.
[5] H. Prodinger,et al. The Sum‐of‐Digits Function for Complex Bases , 1998 .
[6] Yoichiro Takahashi,et al. Markov subshifts and realization of β-expansions , 1974 .
[7] J. Lagarias. Self-Affine Tiles in , 1994 .
[8] Shigeki Akiyama. A self-similar tiling generated by the minimal Pisot number , 1998 .
[9] J. M. Marstrand. Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimensions , 1954 .
[10] Jörg M. Thuswaldner,et al. Canonical number systems, counting automata and fractals , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Robert F. Tichy,et al. Fractal properties of number systems , 2001, Period. Math. Hung..
[12] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[13] S. Akiyama. On a generalization of the radix representation-a survey , 2004 .
[14] Shigeki Akiyama,et al. The topological structure of fractal tilings generated by quadratic number systems , 2005 .
[15] J. Karhumäki,et al. ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .
[16] Jun Luo. A NOTE ON A SELF-SIMILAR TILING GENERATED BY THE MINIMAL PISOT NUMBER , 2002 .
[17] Berndt Farwer,et al. ω-automata , 2002 .
[18] J. Thuswaldner,et al. On the characterization of canonical number systems , 2004 .
[19] Boris Solomyak,et al. Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.
[20] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[21] Shigeki Akiyama,et al. Pisot numbers and greedy algorithm , 1998 .
[22] Andrew Haas,et al. Self-Similar Lattice Tilings , 1994 .
[23] Jun Luo,et al. On the boundary connectedness of connected tiles , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] J. Keesling,et al. The Hausdorff Dimension of the Boundary of a Self‐Similar Tile , 2000 .
[25] Michael Baake,et al. Digit tiling of euclidean space , 2000 .
[26] A. Brauer,et al. On algebraic equations with all but one root in the interior of the unit circle. To my teacher and former colleague Erhard Schmidt on his 75th birthday , 1950 .
[27] Jörg M. Thuswaldner,et al. Neighbours of Self-affine Tiles in Lattice Tilings , 2003 .
[28] I. Kátai,et al. Canonical number systems in imaginary quadratic fields , 1981 .
[29] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[30] K. Schmidt,et al. On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .
[31] Randolph B. Tarrier,et al. Groups , 1973, Algebra.
[32] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.