Model selection in the average of inconsistent data: an analysis of the measured Planck-constant values

When the data do not conform to the hypothesis of a known sampling variance, the fitting of a constant to a set of measured values is a long debated problem. Given the data, fitting would require one to find what measurand value is the most trustworthy. Bayesian inference is reviewed here, to assign probabilities to the possible measurand values. Different hypotheses about the data variance are tested by Bayesian model comparison. Eventually, model selection is exemplified in deriving an estimate of the Planck constant.

[1]  Juris Meija,et al.  Reconciling Planck constant determinations via watt balance and enriched-silicon measurements at NRC Canada , 2012 .

[2]  Richard Dewhurst,et al.  Measurement Science and Technology: a historical perspective , 2012 .

[3]  I A Robinson,et al.  Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance , 2012 .

[4]  Francois Biraben,et al.  New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).

[5]  Blaise Jeanneret,et al.  Determination of the Planck constant with the METAS watt balance , 2011 .

[6]  Yasushi Azuma,et al.  Counting the atoms in a 28Si crystal for a new kilogram definition , 2011 .

[7]  Ruimin Liu,et al.  Uncertainty Improvements of the NIST Electronic Kilogram , 2007, IEEE Transactions on Instrumentation and Measurement.

[8]  V. Dose Bayesian estimate of the Newtonian constant of gravitation , 2006 .

[9]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[10]  D. Pritchard,et al.  World Year of Physics: A direct test of E=mc2 , 2005, Nature.

[11]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[12]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[13]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[14]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[15]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[16]  M. Cox The evaluation of key comparison data , 2002 .

[17]  R. Willink Statistical determination of a comparison reference value using hidden errors , 2002 .

[18]  Raghu N. Kacker,et al.  Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide , 2002 .

[19]  Wolfgang Wöger,et al.  Removing model and data non-conformity in measurement evaluation , 2000 .

[20]  Re-evaluation of a precise measurement of h/mn , 1999 .

[21]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[22]  P. T. Olsen,et al.  Accurate Measurement of the Planck Constant , 1998 .

[23]  W. Weirauch,et al.  Determination of the fine-structure constant by a precise measurement of h/mn: the final result , 1998 .

[24]  E Krüger,et al.  Determination of the fine-structure constant by a precise measurement of h/mn: the final result , 1998 .

[25]  Chang Ho Choi,et al.  A new low-field determination of the proton gyromagnetic ratio in water , 1998, IEEE Trans. Instrum. Meas..

[26]  A. Anastassov DETERMINATION OF THE FINE STRUCTURE CONSTANT BY π , 1997 .

[27]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[28]  T. Funck,et al.  Determination of the volt with the improved PTB voltage balance , 1990, Conference on Precision Electromagnetic Measurements.

[29]  Bryan Kibble,et al.  A Realization of the SI Watt by the NPL Moving-coil Balance , 1990 .

[30]  P. T. Olsen,et al.  A new low-field determination of the proton gyromagnetic ratio in water , 1989 .

[31]  John Mandel,et al.  Consensus Values and Weighting Factors. , 1982, Journal of research of the National Bureau of Standards.

[32]  V. E. Bower,et al.  The Electrochemical Equivalent of Pure Silver-A Value of the Faraday. , 1980, Journal of research of the National Bureau of Standards.

[33]  B P Kibble,et al.  A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field , 1979 .

[34]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[35]  R. T. Birge,et al.  Probable Values of the General Physical Constants , 1929 .