Molecular Dynamics - Vision and Reality

c 2006 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.

[1]  H. Woźniakowski,et al.  The accurate solution of certain continuous problems using only single precision arithmetic , 1985 .

[2]  J. W. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[4]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[5]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[6]  Martin Head-Gordon,et al.  Fractional tiers in fast multipole method calculations , 1996 .

[7]  Peter S. Lomdahl,et al.  LARGE-SCALE MOLECULAR-DYNAMICS SIMULATION OF 19 BILLION PARTICLES , 2004 .

[8]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[9]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[10]  William Kahan,et al.  Pracniques: further remarks on reducing truncation errors , 1965, CACM.

[11]  J. H. Wilkinson Error analysis of floating-point computation , 1960 .

[12]  T. Schlick Molecular modeling and simulation , 2002 .

[13]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[14]  T. Darden,et al.  A Multipole-Based Algorithm for Efficient Calculation of Forces and Potentials in Macroscopic Period , 1996 .

[15]  C. Kong Combining rules for intermolecular potential parameters. II. Rules for the Lennard‐Jones (12–6) potential and the Morse potential , 1973 .

[16]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[17]  T. Germann,et al.  Microscopic View of Structural Phase Transitions Induced by Shock Waves , 2002, Science.

[18]  Ole Møller Quasi double-precision in floating point addition , 1965 .

[19]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[20]  Leslie Greengard,et al.  The numerical solution of the N-body problem , 1990 .

[21]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[22]  A. A. Kornyshev,et al.  Proton transport in polarizable water , 2001 .

[23]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[24]  L. Verlet,et al.  Molecular dynamics and time reversibility , 1993 .

[25]  W. Kahan Implementation of Algorithms. Part 1 , 1973 .

[26]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[27]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[28]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[29]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[30]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[31]  Henryk Wozniakowski,et al.  A Note on Floating-point Summation of Very Many Terms , 1983, J. Inf. Process. Cybern..

[32]  Christian Holm,et al.  How to Mesh up Ewald Sums , 2000 .

[33]  Nicholas J. Higham,et al.  The Accuracy of Floating Point Summation , 1993, SIAM J. Sci. Comput..

[34]  Haruo Yoshida Recent progress in the theory and application of symplectic integrators , 1993 .

[35]  R. Hockney,et al.  Quiet high resolution computer models of a plasma , 1974 .

[36]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[37]  Bernhard Steffen,et al.  A particle-particle particle-multigrid method for long-range interactions in molecular simulations , 2005, Comput. Phys. Commun..

[38]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[39]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[40]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[41]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[42]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[43]  Clint Scovel,et al.  On symplectic lattice maps , 1991 .

[44]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[45]  M. Deserno,et al.  HOW TO MESH UP EWALD SUMS. II. AN ACCURATE ERROR ESTIMATE FOR THE PARTICLE-PARTICLE-PARTICLE-MESH ALGORITHM , 1998, cond-mat/9807100.

[46]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[47]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[48]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[50]  Michel Mareschal,et al.  Bridging time scales: molecular simulations for the next decade , 2002 .

[51]  J. Delhommelle,et al.  Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation , 2001 .

[52]  Paul Gibbon,et al.  Many-body tree methods in physics , 1996 .

[53]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[54]  G. V. Chester,et al.  Solid State Physics , 2000 .

[55]  Arnold T. Hagler,et al.  New combining rules for rare gas van der waals parameters , 1993, J. Comput. Chem..

[56]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[57]  A. Neumaier Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen , 1974 .

[58]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[59]  R. Skeel Symplectic integration with floating-point arithmetic and other approximations , 1999 .

[60]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[61]  R. Hockney The potential calculation and some applications , 1970 .

[62]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[63]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[64]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[65]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[66]  D. Earn,et al.  Exact numerical studies of Hamiltonian maps: iterating without roundoff error , 1992 .

[67]  D. Lévesque,et al.  Long-Time Behavior of the Velocity Autocorrelation Function for a Fluid of Soft Repulsive Particles , 1974 .

[68]  L Wang,et al.  The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[70]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[71]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[72]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[73]  P. Laplace Théorie analytique des probabilités , 1995 .

[74]  Efthimios Kaxiras,et al.  An Overview of Multiscale Simulations of Materials , 2004 .

[75]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[76]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.