The SPEED cache coherence protocol for an optical multi-access interconnect architecture

The paper presents a low overhead, high performance cache coherence protocol designed to exploit high bandwidth point to point and broadcast features of optics. SPEED integrates the virtues of snoopy based schemes and directory based schemes into one efficient protocol. Directory assist is used exclusively for read traffic to eliminate unnecessary broadcasts while snoopy assist is used exclusively for write and synchronization traffic to reduce directory overhead and synchronization complexities. The proposed protocol has the potential to increase performance as a result of its global independence between read and write operations, concurrency in channel access, reduced contention, and efficient broadcast of coherence and synchronization events.

[1]  Philip J. Woest,et al.  The Wisconsin multicube: a new large-scale cache-coherent multiprocessor , 1988, ISCA '88.

[2]  M. Kuznetsov,et al.  Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers , 1994, IEEE Photonics Technology Letters.

[3]  Anoop Gupta,et al.  Cache Invalidation Patterns in Shared-Memory Multiprocessors , 1992, IEEE Trans. Computers.

[4]  James K. Archibald,et al.  Cache coherence protocols: evaluation using a multiprocessor simulation model , 1986, TOCS.

[5]  K. Kato,et al.  Packaging of large-scale integrated-optic N*N star couplers , 1993, IEEE Photonics Technology Letters.

[6]  Randy H. Katz,et al.  The effect of sharing on the cache and bus performance of parallel programs , 1989, ASPLOS III.

[7]  B. Mukherjee,et al.  WDM-based local lightwave networks. I. Single-hop systems , 1992, IEEE Network.

[8]  Charles A. Brackett,et al.  Dense Wavelength Division Multiplexing Networks: Principles and Applications , 1990, IEEE J. Sel. Areas Commun..

[9]  Kanad Ghose,et al.  Hybrid multiprocessing using WDM optical fiber interconnections , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[10]  Anoop Gupta,et al.  The directory-based cache coherence protocol for the DASH multiprocessor , 1990, ISCA '90.

[11]  N. A. Olsson,et al.  Surface-Emitting Microlasers for Photonic Switching and Interchip Connections , 1990 .

[12]  B. Mukherjee,et al.  WDM-based local lightwave networks. II. Multihop systems , 1992, IEEE Network.

[13]  T. M. Pinkston,et al.  Design considerations for optical interconnects in parallel computers , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[14]  Andrew W. Wilson,et al.  Hierarchical cache/bus architecture for shared memory multiprocessors , 1987, ISCA '87.

[15]  P. Stenstrom A survey of cache coherence schemes for multiprocessors , 1990, Computer.

[16]  Leslie Lamport,et al.  How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs , 2016, IEEE Transactions on Computers.

[17]  A.H. Gnauck,et al.  A transimpedance APD optical receiver operating at 10 Gb/s , 1992, IEEE Photonics Technology Letters.

[18]  P. W. Dowd,et al.  Photonic architectures for distributed shared memory multiprocessors , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[19]  U Krackhardt,et al.  Concept for an optical bus-type interconnection network. , 1991, Applied optics.

[20]  Anoop Gupta,et al.  SPLASH: Stanford parallel applications for shared-memory , 1992, CARN.

[21]  Donald Yeung,et al.  The MIT Alewife machine: architecture and performance , 1995, ISCA '98.

[22]  Paul Feautrier,et al.  A New Solution to Coherence Problems in Multicache Systems , 1978, IEEE Transactions on Computers.

[23]  John P. Hayes,et al.  Multiple Bus Architectures , 1987, Computer.

[24]  Robert J. Fowler,et al.  MINT: a front end for efficient simulation of shared-memory multiprocessors , 1994, Proceedings of International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[25]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[26]  Per Stenström,et al.  A Survey of Cache Coherence Schemes for Multiprocessors , 1990, Computer.

[27]  Yale N. Patt,et al.  The Aquarius Project , 1984, COMPCON.

[28]  Anoop Gupta,et al.  Reducing Memory and Traffic Requirements for Scalable Directory-Based Cache Coherence Schemes , 1990, ICPP.

[29]  P. W. Dowd,et al.  A collisionless multiple access protocol for a wavelength division multiplexed star-coupled configuration: architecture and performance analysis , 1992 .

[30]  Anant Agarwal,et al.  LimitLESS directories: A scalable cache coherence scheme , 1991, ASPLOS IV.

[31]  J W Goodman,et al.  Design of an optical reconfigurable shared-bus-hypercube interconnect. , 1994, Applied optics.

[32]  BaerJean-Loup,et al.  Cache coherence protocols: evaluation using a multiprocessor simulation model , 1986 .

[33]  Anthony L. Lentine,et al.  Free-space digital optical systems , 1994 .

[34]  Bernard Glance,et al.  New advances on optical components needed for FDM optical networks , 1993 .