Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation.

The congenital sideroblastic anemias (CSAs) are an uncommon, diverse class of inherited hematopoietic disorders characterized by pathological deposition of iron in the mitochondria of erythroid precursors. In recent years, the genetic causes of several clinically distinctive forms of CSA have been elucidated, which has revealed common themes in their pathogenesis. In particular, most, if not all, can be attributed to disordered mitochondrial heme synthesis, iron-sulfur cluster biogenesis, or pathways related to mitochondrial protein synthesis. This review summarizes the clinical features, molecular genetics, and pathophysiology of each of the CSAs in the context of these pathways.

[1]  H. Heimpel,et al.  Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations , 2011, Human mutation.

[2]  C. Beaumont,et al.  Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia , 2011, Haematologica.

[3]  T. Rouault,et al.  Erythropoiesis and Iron Sulfur Cluster Biogenesis , 2010, Advances in hematology.

[4]  R. Giegé,et al.  Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia--MLASA syndrome. , 2010, American journal of human genetics.

[5]  J. Tisdale,et al.  Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. , 2010, The Journal of clinical investigation.

[6]  E. Neufeld,et al.  Systematic molecular genetic analysis of congenital sideroblastic anemia: Evidence for genetic heterogeneity and identification of novel mutations , 2010, Pediatric blood & cancer.

[7]  E. Neufeld,et al.  Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. , 2009, The Journal of pediatrics.

[8]  C. Camaschella Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. , 2009, Seminars in hematology.

[9]  R. Lill Function and biogenesis of iron–sulphur proteins , 2009, Nature.

[10]  S. Al-Tamemi Pearson's Marrow-Pancreas Syndrome. , 2009, Sultan Qaboos University medical journal.

[11]  V. Tiranti,et al.  Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA) , 2009, BMJ Case Reports.

[12]  M. Fleming,et al.  Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia , 2009, Nature Genetics.

[13]  S. Carr,et al.  A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology , 2008, Cell.

[14]  A. Iolascon,et al.  The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. , 2007, Blood.

[15]  Edmund R S Kunji,et al.  The conserved substrate binding site of mitochondrial carriers. , 2006, Biochimica et biophysica acta.

[16]  T. Rouault The role of iron regulatory proteins in mammalian iron homeostasis and disease , 2006, Nature chemical biology.

[17]  J. Kutok,et al.  The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. , 2006, Human molecular genetics.

[18]  A. Brownlie,et al.  Mitoferrin is essential for erythroid iron assimilation , 2006, Nature.

[19]  C. Epstein,et al.  Iron‐responsive degradation of iron‐regulatory protein 1 does not require the Fe–S cluster , 2006, The EMBO journal.

[20]  Dieter Jahn,et al.  Crystal structure of 5‐aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans , 2005, The EMBO journal.

[21]  B. Paw,et al.  Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis , 2005, Nature.

[22]  Cristina Bertolotto,et al.  Mitochondrial Myopathy and Sideroblastic Anemia (MLASA) , 2005, Journal of Biological Chemistry.

[23]  D. Lev,et al.  Mitochondrial Myopathy, Sideroblastic Anemia, and Lactic Acidosis: An Autosomal Recessive Syndrome in Persian Jews Caused by a Mutation in the PUS1 Gene , 2005, Journal of child neurology.

[24]  Y. Bykhovskaya,et al.  Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). , 2004, American journal of human genetics.

[25]  M. Cascante,et al.  Defective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA). , 2003, Blood.

[26]  A. Maguire,et al.  X‐linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L , 2001, British journal of haematology.

[27]  E. Hatchwell,et al.  X-linked sideroblastic anaemia with ataxia: another mitochondrial disease? , 2001, Journal of neurology, neurosurgery, and psychiatry.

[28]  E. Neufeld,et al.  Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. , 2001, Blood cells, molecules & diseases.

[29]  J. Tolmie,et al.  Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. , 2000, Blood.

[30]  P. Ponka Cell biology of heme. , 1999, The American journal of the medical sciences.

[31]  B. Bader-Meunier,et al.  Hematologic Involvement in Mitochondrial Cytopathies in Childhood: A Retrospective Study of Bone Marrow Smears , 1999, Pediatric Research.

[32]  R. Lill,et al.  The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins , 1999, The EMBO journal.

[33]  A. Hutchinson,et al.  Mutation of a Putative Mitochondrial Iron Transporter Gene (ABC7) in X-Linked Sideroblastic Anemia and Ataxia (XLSA/A) , 1999, Human molecular genetics.

[34]  M. Cazzola,et al.  Four new mutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causing X-linked sideroblastic anemia: increased pyridoxine responsiveness after removal of iron overload by phlebotomy and coinheritance of hereditary hemochromatosis. , 1999, Blood.

[35]  B. Guiard,et al.  The ABC transporter Atm1p is required for mitochondrial iron homeostasis , 1997, FEBS letters.

[36]  P. Ponka Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. , 1997, Blood.

[37]  T. Bourgeron,et al.  Spectrum of mitochondrial DNA rearrangements in the Pearson marrow-pancreas syndrome. , 1995, Human molecular genetics.

[38]  H. Faille,et al.  Accumulation of iron in erythroblasts of patients with erythropoietic protoporphyria , 1993, European journal of clinical investigation.

[39]  S. Bottomley Sideroblastic anemia. , 1991, Hospital practice.

[40]  F. Ledeist,et al.  Pearson's marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. , 1990, The Journal of clinical investigation.

[41]  A. Munnich,et al.  A Multisystem Mitochondrial Disorder in Infancy , 1990 .

[42]  A. Yunis,et al.  Drug-induced red cell dyscrasias. , 1989, Blood reviews.

[43]  T. Bird,et al.  Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder. , 1985, Journal of medical genetics.

[44]  R. Hoffman,et al.  A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. , 1979, The Journal of pediatrics.

[45]  R. Whittington,et al.  Pyridoxine Responsive Anemia in the Human Adult.∗ , 1956, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.