Visuospatial memory computations during whole-body rotations in roll.

We used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridical percept of their self-orientation in space. We hypothesized that if spatial memory is coded allocentrically, these distortions affect the coding of remembered targets and their readout after a body rotation. Alternatively, if coding is egocentric, updating for body rotation becomes essential and errors in performance should be related to the amount of intervening rotation. Subjects (n = 6) were tested making saccades to remembered world-fixed targets after passive body tilts. Initial and final tilt angle ranged between -120 degrees CCW and 120 degrees CW. The results showed that subjects made large systematic directional errors in their saccades (up to 90 degrees ). These errors did not occur in the absence of intervening body rotation, ruling out a memory degradation effect. Regression analysis showed that the errors were closely related to the amount of subjective allocentric distortion at both the initial and final tilt angle, rather than to the amount of intervening rotation. We conclude that the brain uses an allocentric reference frame, possibly gravity-based, to code visuospatial memories during whole-body tilts. This supports the notion that the brain can define information in multiple frames of reference, depending on sensory inputs and task demands.

[1]  Ian P. Howard,et al.  Human visual orientation , 1982 .

[2]  Francesco Lacquaniti,et al.  Multiple levels of representation of reaching in the parieto-frontal network. , 2003, Cerebral cortex.

[3]  D M Merfeld,et al.  Humans use internal models to estimate gravity and linear acceleration , 1999, Nature.

[4]  Hermann Aubert,et al.  Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links , 1861, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[5]  P. Best,et al.  Spatial processing in the brain: the activity of hippocampal place cells. , 2001, Annual review of neuroscience.

[6]  Yoshiharu Sakata,et al.  The Vestibular Cortex , 2002 .

[7]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[8]  Lawrence H Snyder,et al.  Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets. , 2003, Journal of neurophysiology.

[9]  T. Mergner,et al.  Visual object localisation in space , 2001, Experimental Brain Research.

[10]  E. M. Klier,et al.  Human oculomotor system accounts for 3-D eye orientation in the visual-motor transformation for saccades. , 1998, Journal of neurophysiology.

[11]  A. D. Van Beuzekom,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000 .

[12]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[13]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[14]  Francesco Lacquaniti,et al.  Cognitive allocentric representations of visual space shape pointing errors , 2002, Experimental Brain Research.

[15]  Jan A M Van Gisbergen,et al.  Interpretation of a discontinuity in the sense of verticality at large body tilt. , 2004, Journal of neurophysiology.

[16]  M Dieterich,et al.  Vestibular cortex lesions affect the perception of verticality , 1994, Annals of neurology.

[17]  Bruce Bridgeman,et al.  The induced Roelofs effect: two visual systems or the shift of a single reference frame? , 2004, Vision Research.

[18]  P. Medendorp,et al.  Visuospatial updating of reaching targets in near and far space , 2002, Neuroreport.

[19]  B. Bridgeman,et al.  Interaction of cognitive and sensorimotor maps of visual space , 1997, Perception & psychophysics.

[20]  J D Crawford,et al.  Spatial transformations for eye-hand coordination. , 2004, Journal of neurophysiology.

[21]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[22]  B. Hess,et al.  Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. , 1994, Journal of neurophysiology.

[23]  Jean-Louis Vercher,et al.  Updating visual space during passive and voluntary head-in-space movements , 1998, Experimental Brain Research.

[24]  H. Mittelstaedt A new solution to the problem of the subjective vertical , 1983, Naturwissenschaften.

[25]  D. Sparks,et al.  Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. , 1983, Journal of neurophysiology.

[26]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[27]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[28]  M. Hayhoe,et al.  Reference frames in saccadic targeting , 1997, Experimental Brain Research.

[29]  Paul Dassonville,et al.  The use of egocentric and exocentric location cues in saccadic programming , 1995, Vision Research.

[30]  R. M. Müri,et al.  The role of the right medial temporal lobe in the control of memory-guided saccades , 2004, Experimental Brain Research.

[31]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[32]  W Pieter Medendorp,et al.  Rotational Remapping in Human Spatial Memory during Eye and Head Motion , 2002, The Journal of Neuroscience.

[33]  A. Berthoz,et al.  Contribution of the otoliths to the calculation of linear displacement. , 1989, Journal of neurophysiology.

[34]  L. Young,et al.  Three dimensional eye movements of squirrel monkeys following postrotatory tilt. , 1993, Journal of vestibular research : equilibrium & orientation.

[35]  D E Angelaki,et al.  Inertial Processing of Vestibulo‐Ocular Signals , 1999, Annals of the New York Academy of Sciences.

[36]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[37]  Dora E Angelaki,et al.  Roles of gravitational cues and efference copy signals in the rotational updating of memory saccades. , 2005, Journal of neurophysiology.

[38]  T. Brandt,et al.  The Vestibular Cortex: Its Locations, Functions, and Disorders , 1999, Annals of the New York Academy of Sciences.

[39]  Thomas Haslwanter,et al.  Three-dimensional eye position during static roll and pitch in humans , 2001, Vision Research.

[40]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[41]  M. A. Gresty,et al.  Assessment of the perception of verticality and horizontality with self-paced saccades , 1998, Experimental Brain Research.

[42]  Eric Vicaut,et al.  Perception of Verticality After Recent Cerebral Hemispheric Stroke , 2002, Stroke.

[43]  P. E. Hallett,et al.  Saccadic eye movements towards stimuli triggered by prior saccades , 1976, Vision Research.

[44]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[45]  J. V. Van Gisbergen,et al.  Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. , 2000, Journal of neurophysiology.

[46]  Bertrand Gaymard,et al.  Cortical control of spatial memory in humans: The visuooculomotor model , 2002, Annals of neurology.

[47]  H. Honda Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference , 1999, Vision Research.

[48]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[49]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[50]  Dora E Angelaki,et al.  Inertial vestibular coding of motion: concepts and evidence , 1997, Current Opinion in Neurobiology.

[51]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W Pieter Medendorp,et al.  Motion Parallax Is Computed in the Updating of Human Spatial Memory , 2003, The Journal of Neuroscience.

[53]  Fred Mast,et al.  Perceived body position and the visual horizontal , 1996, Brain Research Bulletin.

[54]  M. Wexler,et al.  Voluntary Head Movement and Allocentric Perception of Space , 2003, Psychological science.

[55]  L. Young,et al.  A multidimensional model of the effect of gravity on the spatial orientation of the monkey. , 1993, Journal of vestibular research : equilibrium & orientation.

[56]  I Israël,et al.  Vestibular information contributes to update retinotopic maps. , 1999, Neuroreport.

[57]  A. A. Skavenski,et al.  Contr of eye position in the dark. , 1970, Vision research.

[58]  Mary M Hayhoe,et al.  Visual memory and motor planning in a natural task. , 2003, Journal of vision.