Homology and symmetry breaking in Rayleigh-Bénard convection: Experiments and simulations

Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Benard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.

[1]  Eberhard Bodenschatz,et al.  Recent Developments in Rayleigh-Bénard Convection , 2000 .

[2]  Re-entrant hexagons in non-Boussinesq convection , 2005, Journal of Fluid Mechanics.

[3]  R. J. Wilson Analysis situs , 1985 .

[4]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[5]  Hermann Riecke,et al.  Geometric diagnostics of complex patterns: spiral defect chaos. , 2005, Chaos.

[6]  坂上 貴之,et al.  書評「T. Kaczynski, K. Mischaikow, and M. Mrozek:Computational Homology (Applied Mathematical Sciences 157, Springer-Verlag, 2004 年, 480 ページ)」 , 2005 .

[7]  Konstantin Mischaikow,et al.  Topological characterization of spatial-temporal chaos. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Morris,et al.  Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. , 1993, Physical review letters.

[9]  G. Ahlers,et al.  Apparatus for the study of Rayleigh–Bénard convection in gases under pressure , 1996 .

[10]  F. Busse,et al.  On the stability of steady finite amplitude convection , 1965, Journal of Fluid Mechanics.

[11]  Friedrich H. Busse,et al.  The stability of finite amplitude cellular convection and its relation to an extremum principle , 1967, Journal of Fluid Mechanics.

[12]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.

[13]  Spirals and chaos , 1994, Nature.

[14]  W. Pesch,et al.  Complex spatiotemporal convection patterns. , 1996, Chaos.

[15]  Weber,et al.  Spiral defect chaos in Rayleigh-Bénard convection. , 1994, Physical Review Letters.

[16]  G. Voth,et al.  Fluid particle accelerations in fully developed turbulence , 2000, Nature.