A QGIS Tool for Automatically Identifying Asbestos Roofing
暂无分享,去创建一个
Maurizio Tommasini | Alessandro Bacciottini | Monica Gherardelli | M. Gherardelli | M. Tommasini | Alessandro Bacciottini
[1] J. R. Jensen,et al. Remote Sensing of Urban/Suburban Infrastructure and Socio‐Economic Attributes , 2011 .
[2] Marco Gianinetto,et al. Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps , 2014, Sensors.
[3] Mahta Moghaddam,et al. Wetlands map of Alaska using L-Band radar satellite imagery , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.
[4] Luca Congedo,et al. Developing expeditious methodology for mapping asbestos-cement roof coverings over the territory of Lazio Region , 2014 .
[5] Anton Novichikhin. Digital Globe , 2021 .
[6] Fabio Pacifici. On the predictive value of the WorldView3 VNIR and SWIR spectral bands , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
[7] Marco Gianinetto,et al. Airborne remote sensing for mapping asbestos roofs in aosta valley , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.
[8] Helmi Zulhaidi Mohd Shafri,et al. Development of a Generic Model for the Detection of Roof Materials Based on an Object-Based Approach Using WorldView-2 Satellite Imagery , 2013 .
[9] Sarawut Ninsawat,et al. Identification of roofing materials with Discriminant Function Analysis and Random Forest classifiers on pan-sharpened WorldView-2 imagery – a comparison , 2018, Hungarian Geographical Bulletin.
[10] V. Cuomo,et al. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data , 2007 .
[11] P W J Bartrip,et al. History of asbestos related disease , 2004, Postgraduate Medical Journal.
[12] Romania TESTING ALGORITHMS FOR THE IDENTIFICATION OF ASBESTOS ROOFING BASED ON HYPERSPECTRAL DATA , 2015 .
[14] Sandra Lowe,et al. Classification Methods For Remotely Sensed Data , 2016 .
[15] S. Bhaskaran,et al. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data , 2010 .
[16] Mahta Moghaddam,et al. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery , 2009 .
[17] Helmi Zulhaidi Mohd Shafri,et al. Development of spectral indices for roofing material condition status detection using field spectroscopy and WorldView-3 data , 2016 .
[18] John A. Richards,et al. Classifier performance and map accuracy , 1996 .
[19] Thomas Blaschke,et al. Object based image analysis for remote sensing , 2010 .
[20] Micol Rossini,et al. Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images , 2015, ISPRS Int. J. Geo Inf..
[21] Helmi Zulhaidi Mohd Shafri,et al. A comparison of hyperspectral data and worldview-2 images to detect impervious surface , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).
[22] Patricia Gober,et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.
[23] A. Kulkarni,et al. Random Forest Algorithm for Land Cover Classification , 2016 .
[24] Mark A. Friedl,et al. Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods , 2001, IEEE Trans. Geosci. Remote. Sens..
[25] Paolo Gamba,et al. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor , 2015 .
[26] C. Marino,et al. Airborne hyperspectral remote sensing applications in urban areas: asbestos concrete sheeting identification and mapping , 2001, IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (Cat. No.01EX482).
[27] Stefano Casciardi,et al. Method validation for the identification of asbestos–cement roofing , 2012 .
[28] L. Fiumi. Evaluation of MIVIS hyperspectral data for mapping covering materials , 2001, IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (Cat. No.01EX482).
[29] Helmi Zulhaidi Mohd Shafri,et al. New semi-automated mapping of asbestos cement roofs using rule-based object-based image analysis and Taguchi optimization technique from WorldView-2 images , 2017 .
[30] Zoltán Kovács,et al. TESTING OF ALGORITHMS FOR THE IDENTIFICATION OF ASBESTOS ROOFING BASED ON HYPERSPECTRAL DATA , 2014 .
[31] Yasunosuke Suzuki,et al. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. , 2005, International journal of hygiene and environmental health.
[32] Hurtado Abril,et al. Generación de un índice espectro-temporal para la identificación de zonas afectadas por deforestación usando imágenes Landsat. , 2020 .