Gating and control of primary visual cortex by pulvinar

The primary visual cortex (V1) receives its driving input from the eyes via the lateral geniculate nucleus (LGN) of the thalamus. The lateral pulvinar nucleus of the thalamus also projects to V1, but this input is not well understood. We manipulated lateral pulvinar neural activity in prosimian primates and assessed the effect on supra-granular layers of V1 that project to higher visual cortex. Reversibly inactivating lateral pulvinar prevented supra-granular V1 neurons from responding to visual stimulation. Reversible, focal excitation of lateral pulvinar receptive fields increased the visual responses in coincident V1 receptive fields fourfold and shifted partially overlapping V1 receptive fields toward the center of excitation. V1 responses to regions surrounding the excited lateral pulvinar receptive fields were suppressed. LGN responses were unaffected by these lateral pulvinar manipulations. Excitation of lateral pulvinar after LGN lesion activated supra-granular layer V1 neurons. Thus, lateral pulvinar is able to powerfully control and gate information outflow from V1.

[1]  R. Rafal,et al.  Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar , 2002, Nature Neuroscience.

[2]  A. Hendrickson,et al.  The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey , 1977, Brain Research.

[3]  D. Leopold,et al.  Neural activity in the visual thalamus reflects perceptual suppression , 2009, Proceedings of the National Academy of Sciences.

[4]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[5]  N. Logothetis,et al.  The effects of electrical microstimulation on cortical signal propagation , 2010, Nature Neuroscience.

[6]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[7]  L. Chalupa,et al.  A review of cat and monkey studies implicating the pulvinar in visual function. , 1977, Behavioral biology.

[8]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[9]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[10]  Leslie G. Ungerleider,et al.  Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array , 1979, Neuropsychologia.

[11]  L. Benevento,et al.  A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey , 1979, Brain Research.

[12]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[13]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[14]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. , 1985, Journal of neurophysiology.

[15]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[16]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  David A. McCormick,et al.  Balanced Recurrent Excitation and Inhibition in Local Cortical Networks , 2003 .

[18]  Tony Ro,et al.  The role of the human pulvinar in visual attention and action: evidence from temporal-order judgment, saccade decision, and antisaccade tasks. , 2008, Progress in brain research.

[19]  S. Sherman,et al.  Synaptic Properties of Corticocortical Connections between the Primary and Secondary Visual Cortical Areas in the Mouse , 2011, The Journal of Neuroscience.

[20]  R. Mize,et al.  [3H]muscimol labels neurons in both the superficial and deep layers of cat superior colliculus , 1989, Neuroscience Letters.

[21]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[22]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[23]  Vivien A. Casagrande,et al.  Cortical function : a view from the thalamus , 2005 .

[24]  Robert H. Wurtz,et al.  Signals Conveyed in the Pulvinar Pathway from Superior Colliculus to Cortical Area MT , 2011, The Journal of Neuroscience.

[25]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. B. Bender,et al.  Comparison of the effects of superior colliculus and pulvinar lesions on visual search and tachistoscopic pattern discrimination in monkeys , 2004, Experimental Brain Research.

[27]  H. Karnath,et al.  The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. , 2002, Brain : a journal of neurology.

[28]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[29]  R. L. Gregory,et al.  Perceptual filling in of artificially induced scotomas in human vision , 1991, Nature.

[30]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  P. O. Bishop,et al.  Binocular interaction fields of single units in the cat striate cortex , 1971, The Journal of physiology.

[32]  Glyn W. Humphreys,et al.  Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey , 2009, Proceedings of the National Academy of Sciences.

[33]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[34]  Janita Turchi,et al.  Pulvinar Inactivation Disrupts Selection of Movement Plans , 2010, The Journal of Neuroscience.

[35]  R W Guillery,et al.  Distinct functions for direct and transthalamic corticocortical connections. , 2011, Journal of neurophysiology.

[36]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[37]  D. Whitney,et al.  Precise discrimination of object position in the human pulvinar , 2009, Human brain mapping.

[38]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[39]  M. Mallar Chakravarty,et al.  Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. , 2010, The American journal of psychiatry.

[40]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[41]  D. V. Essen,et al.  Corticocortical and thalamocortical information flow in the primate visual system. , 2005 .

[42]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[43]  John H. Martin Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat , 1991, Neuroscience Letters.

[44]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[46]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[47]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  S. Molotchnikoff,et al.  The Lateral Posterior-Pulvinar Complex Modulation of Stimulus-dependent Oscillations in the Cat Visual Cortex , 1996, Vision Research.

[49]  D. B. Bender,et al.  Effect of attentive fixation in macaque thalamus and cortex. , 2001, Journal of neurophysiology.

[50]  M. Karnovsky,et al.  A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES , 1964, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[51]  A. T. Smith,et al.  Dissociating vision and visual attention in the human pulvinar. , 2009, Journal of neurophysiology.